[FFmpeg-cvslog] libavfilter/dnn_interface: use dims to represent shapes

Wenbin Chen git at videolan.org
Sun Jan 28 06:00:53 EET 2024


ffmpeg | branch: master | Wenbin Chen <wenbin.chen at intel.com> | Wed Jan 17 15:21:50 2024 +0800| [3de38b9da5c2ffddcf1c532bca78f989b0474494] | committer: Guo Yejun

libavfilter/dnn_interface: use dims to represent shapes

For detect and classify output, width and height make no sence, so
change width, height to dims to represent the shape of tensor. Use
layout and dims to get width, height and channel.

Signed-off-by: Wenbin Chen <wenbin.chen at intel.com>
Reviewed-by: Guo Yejun <yejun.guo at intel.com>

> http://git.videolan.org/gitweb.cgi/ffmpeg.git/?a=commit;h=3de38b9da5c2ffddcf1c532bca78f989b0474494
---

 libavfilter/dnn/dnn_backend_openvino.c | 80 +++++++++++++++++++---------------
 libavfilter/dnn/dnn_backend_tf.c       | 32 +++++++++-----
 libavfilter/dnn/dnn_io_proc.c          | 30 +++++++++----
 libavfilter/dnn_interface.h            | 17 +++++++-
 libavfilter/vf_dnn_classify.c          |  6 +--
 libavfilter/vf_dnn_detect.c            | 50 +++++++++++----------
 libavfilter/vf_dnn_processing.c        | 21 ++++++---
 7 files changed, 146 insertions(+), 90 deletions(-)

diff --git a/libavfilter/dnn/dnn_backend_openvino.c b/libavfilter/dnn/dnn_backend_openvino.c
index 590ddd586c..73b42c32b1 100644
--- a/libavfilter/dnn/dnn_backend_openvino.c
+++ b/libavfilter/dnn/dnn_backend_openvino.c
@@ -253,9 +253,9 @@ static int fill_model_input_ov(OVModel *ov_model, OVRequestItem *request)
         ov_shape_free(&input_shape);
         return ov2_map_error(status, NULL);
     }
-    input.height = dims[1];
-    input.width = dims[2];
-    input.channels = dims[3];
+    for (int i = 0; i < input_shape.rank; i++)
+        input.dims[i] = dims[i];
+    input.layout = DL_NHWC;
     input.dt = precision_to_datatype(precision);
 #else
     status = ie_infer_request_get_blob(request->infer_request, task->input_name, &input_blob);
@@ -278,9 +278,9 @@ static int fill_model_input_ov(OVModel *ov_model, OVRequestItem *request)
         av_log(ctx, AV_LOG_ERROR, "Failed to get input blob buffer\n");
         return DNN_GENERIC_ERROR;
     }
-    input.height = dims.dims[2];
-    input.width = dims.dims[3];
-    input.channels = dims.dims[1];
+    for (int i = 0; i < input_shape.rank; i++)
+        input.dims[i] = dims[i];
+    input.layout = DL_NCHW;
     input.data = blob_buffer.buffer;
     input.dt = precision_to_datatype(precision);
 #endif
@@ -339,8 +339,8 @@ static int fill_model_input_ov(OVModel *ov_model, OVRequestItem *request)
             av_assert0(!"should not reach here");
             break;
         }
-        input.data = (uint8_t *)input.data
-                     + input.width * input.height * input.channels * get_datatype_size(input.dt);
+        input.data = (uint8_t *)input.data +
+            input.dims[1] * input.dims[2] * input.dims[3] * get_datatype_size(input.dt);
     }
 #if HAVE_OPENVINO2
     ov_tensor_free(tensor);
@@ -403,10 +403,11 @@ static void infer_completion_callback(void *args)
             goto end;
         }
         outputs[i].dt       = precision_to_datatype(precision);
-
-        outputs[i].channels = output_shape.rank > 2 ? dims[output_shape.rank - 3] : 1;
-        outputs[i].height   = output_shape.rank > 1 ? dims[output_shape.rank - 2] : 1;
-        outputs[i].width    = output_shape.rank > 0 ? dims[output_shape.rank - 1] : 1;
+        outputs[i].layout   = DL_NCHW;
+        outputs[i].dims[0]  = 1;
+        outputs[i].dims[1]  = output_shape.rank > 2 ? dims[output_shape.rank - 3] : 1;
+        outputs[i].dims[2]  = output_shape.rank > 1 ? dims[output_shape.rank - 2] : 1;
+        outputs[i].dims[3]  = output_shape.rank > 0 ? dims[output_shape.rank - 1] : 1;
         av_assert0(request->lltask_count <= dims[0]);
         outputs[i].layout   = ctx->options.layout;
         outputs[i].scale    = ctx->options.scale;
@@ -445,9 +446,9 @@ static void infer_completion_callback(void *args)
         return;
     }
     output.data     = blob_buffer.buffer;
-    output.channels = dims.dims[1];
-    output.height   = dims.dims[2];
-    output.width    = dims.dims[3];
+    output.layout   = DL_NCHW;
+    for (int i = 0; i < 4; i++)
+        output.dims[i] = dims.dims[i];
     av_assert0(request->lltask_count <= dims.dims[0]);
     output.dt       = precision_to_datatype(precision);
     output.layout   = ctx->options.layout;
@@ -469,8 +470,10 @@ static void infer_completion_callback(void *args)
                     ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx);
                 }
             } else {
-                task->out_frame->width = outputs[0].width;
-                task->out_frame->height = outputs[0].height;
+                task->out_frame->width =
+                    outputs[0].dims[dnn_get_width_idx_by_layout(outputs[0].layout)];
+                task->out_frame->height =
+                    outputs[0].dims[dnn_get_height_idx_by_layout(outputs[0].layout)];
             }
             break;
         case DFT_ANALYTICS_DETECT:
@@ -501,7 +504,8 @@ static void infer_completion_callback(void *args)
         av_freep(&request->lltasks[i]);
         for (int i = 0; i < ov_model->nb_outputs; i++)
             outputs[i].data = (uint8_t *)outputs[i].data +
-                outputs[i].width * outputs[i].height * outputs[i].channels * get_datatype_size(outputs[i].dt);
+                outputs[i].dims[1] * outputs[i].dims[2] * outputs[i].dims[3] *
+                get_datatype_size(outputs[i].dt);
     }
 end:
 #if HAVE_OPENVINO2
@@ -1085,7 +1089,6 @@ static int get_input_ov(void *model, DNNData *input, const char *input_name)
 #if HAVE_OPENVINO2
     ov_shape_t input_shape = {0};
     ov_element_type_e precision;
-    int64_t* dims;
     ov_status_e status;
     if (input_name)
         status = ov_model_const_input_by_name(ov_model->ov_model, input_name, &ov_model->input_port);
@@ -1105,16 +1108,18 @@ static int get_input_ov(void *model, DNNData *input, const char *input_name)
         av_log(ctx, AV_LOG_ERROR, "Failed to get input port shape.\n");
         return ov2_map_error(status, NULL);
     }
-    dims = input_shape.dims;
-    if (dims[1] <= 3) { // NCHW
-        input->channels = dims[1];
-        input->height   = input_resizable ? -1 : dims[2];
-        input->width    = input_resizable ? -1 : dims[3];
-    } else { // NHWC
-        input->height   = input_resizable ? -1 : dims[1];
-        input->width    = input_resizable ? -1 : dims[2];
-        input->channels = dims[3];
+    for (int i = 0; i < 4; i++)
+        input->dims[i] = input_shape.dims[i];
+    if (input_resizable) {
+        input->dims[dnn_get_width_idx_by_layout(input->layout)] = -1;
+        input->dims[dnn_get_height_idx_by_layout(input->layout)] = -1;
     }
+
+    if (input_shape.dims[1] <= 3) // NCHW
+        input->layout = DL_NCHW;
+    else // NHWC
+        input->layout = DL_NHWC;
+
     input->dt       = precision_to_datatype(precision);
     ov_shape_free(&input_shape);
     return 0;
@@ -1144,15 +1149,18 @@ static int get_input_ov(void *model, DNNData *input, const char *input_name)
                 return DNN_GENERIC_ERROR;
             }
 
-            if (dims[1] <= 3) { // NCHW
-                input->channels = dims[1];
-                input->height   = input_resizable ? -1 : dims[2];
-                input->width    = input_resizable ? -1 : dims[3];
-            } else { // NHWC
-                input->height   = input_resizable ? -1 : dims[1];
-                input->width    = input_resizable ? -1 : dims[2];
-                input->channels = dims[3];
+            for (int i = 0; i < 4; i++)
+                input->dims[i] = input_shape.dims[i];
+            if (input_resizable) {
+                input->dims[dnn_get_width_idx_by_layout(input->layout)] = -1;
+                input->dims[dnn_get_height_idx_by_layout(input->layout)] = -1;
             }
+
+            if (input_shape.dims[1] <= 3) // NCHW
+                input->layout = DL_NCHW;
+            else // NHWC
+                input->layout = DL_NHWC;
+
             input->dt       = precision_to_datatype(precision);
             return 0;
         }
diff --git a/libavfilter/dnn/dnn_backend_tf.c b/libavfilter/dnn/dnn_backend_tf.c
index 25046b58d9..27c5178bb5 100644
--- a/libavfilter/dnn/dnn_backend_tf.c
+++ b/libavfilter/dnn/dnn_backend_tf.c
@@ -251,7 +251,12 @@ static TF_Tensor *allocate_input_tensor(const DNNData *input)
 {
     TF_DataType dt;
     size_t size;
-    int64_t input_dims[] = {1, input->height, input->width, input->channels};
+    int64_t input_dims[4] = { 0 };
+
+    input_dims[0] = 1;
+    input_dims[1] = input->dims[dnn_get_height_idx_by_layout(input->layout)];
+    input_dims[2] = input->dims[dnn_get_width_idx_by_layout(input->layout)];
+    input_dims[3] = input->dims[dnn_get_channel_idx_by_layout(input->layout)];
     switch (input->dt) {
     case DNN_FLOAT:
         dt = TF_FLOAT;
@@ -310,9 +315,9 @@ static int get_input_tf(void *model, DNNData *input, const char *input_name)
 
     // currently only NHWC is supported
     av_assert0(dims[0] == 1 || dims[0] == -1);
-    input->height = dims[1];
-    input->width = dims[2];
-    input->channels = dims[3];
+    for (int i = 0; i < 4; i++)
+        input->dims[i] = dims[i];
+    input->layout = DL_NHWC;
 
     return 0;
 }
@@ -640,8 +645,8 @@ static int fill_model_input_tf(TFModel *tf_model, TFRequestItem *request) {
     }
 
     infer_request = request->infer_request;
-    input.height = task->in_frame->height;
-    input.width = task->in_frame->width;
+    input.dims[1] = task->in_frame->height;
+    input.dims[2] = task->in_frame->width;
 
     infer_request->tf_input = av_malloc(sizeof(TF_Output));
     if (!infer_request->tf_input) {
@@ -731,9 +736,12 @@ static void infer_completion_callback(void *args) {
     }
 
     for (uint32_t i = 0; i < task->nb_output; ++i) {
-        outputs[i].height = TF_Dim(infer_request->output_tensors[i], 1);
-        outputs[i].width = TF_Dim(infer_request->output_tensors[i], 2);
-        outputs[i].channels = TF_Dim(infer_request->output_tensors[i], 3);
+        outputs[i].dims[dnn_get_height_idx_by_layout(outputs[i].layout)] =
+            TF_Dim(infer_request->output_tensors[i], 1);
+        outputs[i].dims[dnn_get_width_idx_by_layout(outputs[i].layout)] =
+            TF_Dim(infer_request->output_tensors[i], 2);
+        outputs[i].dims[dnn_get_channel_idx_by_layout(outputs[i].layout)] =
+            TF_Dim(infer_request->output_tensors[i], 3);
         outputs[i].data = TF_TensorData(infer_request->output_tensors[i]);
         outputs[i].dt = (DNNDataType)TF_TensorType(infer_request->output_tensors[i]);
     }
@@ -747,8 +755,10 @@ static void infer_completion_callback(void *args) {
                 ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx);
             }
         } else {
-            task->out_frame->width = outputs[0].width;
-            task->out_frame->height = outputs[0].height;
+            task->out_frame->width =
+                outputs[0].dims[dnn_get_width_idx_by_layout(outputs[0].layout)];
+            task->out_frame->height =
+                outputs[0].dims[dnn_get_height_idx_by_layout(outputs[0].layout)];
         }
         break;
     case DFT_ANALYTICS_DETECT:
diff --git a/libavfilter/dnn/dnn_io_proc.c b/libavfilter/dnn/dnn_io_proc.c
index ab656e8ed7..e5d6edb301 100644
--- a/libavfilter/dnn/dnn_io_proc.c
+++ b/libavfilter/dnn/dnn_io_proc.c
@@ -70,7 +70,7 @@ int ff_proc_from_dnn_to_frame(AVFrame *frame, DNNData *output, void *log_ctx)
     dst_data = (void **)frame->data;
     linesize[0] = frame->linesize[0];
     if (output->layout == DL_NCHW) {
-        middle_data = av_malloc(plane_size * output->channels);
+        middle_data = av_malloc(plane_size * output->dims[1]);
         if (!middle_data) {
             ret = AVERROR(ENOMEM);
             goto err;
@@ -209,7 +209,7 @@ int ff_proc_from_frame_to_dnn(AVFrame *frame, DNNData *input, void *log_ctx)
     src_data = (void **)frame->data;
     linesize[0] = frame->linesize[0];
     if (input->layout == DL_NCHW) {
-        middle_data = av_malloc(plane_size * input->channels);
+        middle_data = av_malloc(plane_size * input->dims[1]);
         if (!middle_data) {
             ret = AVERROR(ENOMEM);
             goto err;
@@ -346,6 +346,7 @@ int ff_frame_to_dnn_classify(AVFrame *frame, DNNData *input, uint32_t bbox_index
     int ret = 0;
     enum AVPixelFormat fmt;
     int left, top, width, height;
+    int width_idx, height_idx;
     const AVDetectionBBoxHeader *header;
     const AVDetectionBBox *bbox;
     AVFrameSideData *sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES);
@@ -364,6 +365,9 @@ int ff_frame_to_dnn_classify(AVFrame *frame, DNNData *input, uint32_t bbox_index
         return AVERROR(ENOSYS);
     }
 
+    width_idx = dnn_get_width_idx_by_layout(input->layout);
+    height_idx = dnn_get_height_idx_by_layout(input->layout);
+
     header = (const AVDetectionBBoxHeader *)sd->data;
     bbox = av_get_detection_bbox(header, bbox_index);
 
@@ -374,17 +378,20 @@ int ff_frame_to_dnn_classify(AVFrame *frame, DNNData *input, uint32_t bbox_index
 
     fmt = get_pixel_format(input);
     sws_ctx = sws_getContext(width, height, frame->format,
-                             input->width, input->height, fmt,
+                             input->dims[width_idx],
+                             input->dims[height_idx], fmt,
                              SWS_FAST_BILINEAR, NULL, NULL, NULL);
     if (!sws_ctx) {
         av_log(log_ctx, AV_LOG_ERROR, "Failed to create scale context for the conversion "
                "fmt:%s s:%dx%d -> fmt:%s s:%dx%d\n",
                av_get_pix_fmt_name(frame->format), width, height,
-               av_get_pix_fmt_name(fmt), input->width, input->height);
+               av_get_pix_fmt_name(fmt),
+               input->dims[width_idx],
+               input->dims[height_idx]);
         return AVERROR(EINVAL);
     }
 
-    ret = av_image_fill_linesizes(linesizes, fmt, input->width);
+    ret = av_image_fill_linesizes(linesizes, fmt, input->dims[width_idx]);
     if (ret < 0) {
         av_log(log_ctx, AV_LOG_ERROR, "unable to get linesizes with av_image_fill_linesizes");
         sws_freeContext(sws_ctx);
@@ -414,7 +421,7 @@ int ff_frame_to_dnn_detect(AVFrame *frame, DNNData *input, void *log_ctx)
 {
     struct SwsContext *sws_ctx;
     int linesizes[4];
-    int ret = 0;
+    int ret = 0, width_idx, height_idx;
     enum AVPixelFormat fmt = get_pixel_format(input);
 
     /* (scale != 1 and scale != 0) or mean != 0 */
@@ -430,18 +437,23 @@ int ff_frame_to_dnn_detect(AVFrame *frame, DNNData *input, void *log_ctx)
         return AVERROR(ENOSYS);
     }
 
+    width_idx = dnn_get_width_idx_by_layout(input->layout);
+    height_idx = dnn_get_height_idx_by_layout(input->layout);
+
     sws_ctx = sws_getContext(frame->width, frame->height, frame->format,
-                             input->width, input->height, fmt,
+                             input->dims[width_idx],
+                             input->dims[height_idx], fmt,
                              SWS_FAST_BILINEAR, NULL, NULL, NULL);
     if (!sws_ctx) {
         av_log(log_ctx, AV_LOG_ERROR, "Impossible to create scale context for the conversion "
             "fmt:%s s:%dx%d -> fmt:%s s:%dx%d\n",
             av_get_pix_fmt_name(frame->format), frame->width, frame->height,
-            av_get_pix_fmt_name(fmt), input->width, input->height);
+            av_get_pix_fmt_name(fmt), input->dims[width_idx],
+            input->dims[height_idx]);
         return AVERROR(EINVAL);
     }
 
-    ret = av_image_fill_linesizes(linesizes, fmt, input->width);
+    ret = av_image_fill_linesizes(linesizes, fmt, input->dims[width_idx]);
     if (ret < 0) {
         av_log(log_ctx, AV_LOG_ERROR, "unable to get linesizes with av_image_fill_linesizes");
         sws_freeContext(sws_ctx);
diff --git a/libavfilter/dnn_interface.h b/libavfilter/dnn_interface.h
index 183d8418b2..852d88baa8 100644
--- a/libavfilter/dnn_interface.h
+++ b/libavfilter/dnn_interface.h
@@ -64,7 +64,7 @@ typedef enum {
 
 typedef struct DNNData{
     void *data;
-    int width, height, channels;
+    int dims[4];
     // dt and order together decide the color format
     DNNDataType dt;
     DNNColorOrder order;
@@ -134,4 +134,19 @@ typedef struct DNNModule{
 // Initializes DNNModule depending on chosen backend.
 const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void *log_ctx);
 
+static inline int dnn_get_width_idx_by_layout(DNNLayout layout)
+{
+    return layout == DL_NHWC ? 2 : 3;
+}
+
+static inline int dnn_get_height_idx_by_layout(DNNLayout layout)
+{
+    return layout == DL_NHWC ? 1 : 2;
+}
+
+static inline int dnn_get_channel_idx_by_layout(DNNLayout layout)
+{
+    return layout == DL_NHWC ? 3 : 1;
+}
+
 #endif
diff --git a/libavfilter/vf_dnn_classify.c b/libavfilter/vf_dnn_classify.c
index e88e59d09c..d180c3b461 100644
--- a/libavfilter/vf_dnn_classify.c
+++ b/libavfilter/vf_dnn_classify.c
@@ -68,8 +68,8 @@ static int dnn_classify_post_proc(AVFrame *frame, DNNData *output, uint32_t bbox
     uint32_t label_id;
     float confidence;
     AVFrameSideData *sd;
-
-    if (output->channels <= 0) {
+    int output_size = output->dims[3] * output->dims[2] * output->dims[1];
+    if (output_size <= 0) {
         return -1;
     }
 
@@ -88,7 +88,7 @@ static int dnn_classify_post_proc(AVFrame *frame, DNNData *output, uint32_t bbox
     classifications = output->data;
     label_id = 0;
     confidence= classifications[0];
-    for (int i = 1; i < output->channels; i++) {
+    for (int i = 1; i < output_size; i++) {
         if (classifications[i] > confidence) {
             label_id = i;
             confidence= classifications[i];
diff --git a/libavfilter/vf_dnn_detect.c b/libavfilter/vf_dnn_detect.c
index 249cbba0f7..caccbf7a12 100644
--- a/libavfilter/vf_dnn_detect.c
+++ b/libavfilter/vf_dnn_detect.c
@@ -166,14 +166,14 @@ static int dnn_detect_parse_yolo_output(AVFrame *frame, DNNData *output, int out
         scale_w = cell_w;
         scale_h = cell_h;
     } else {
-        if (output[output_index].height != output[output_index].width &&
-            output[output_index].height == output[output_index].channels) {
+        if (output[output_index].dims[2] != output[output_index].dims[3] &&
+            output[output_index].dims[2] == output[output_index].dims[1]) {
             is_NHWC = 1;
-            cell_w = output[output_index].height;
-            cell_h = output[output_index].channels;
+            cell_w = output[output_index].dims[2];
+            cell_h = output[output_index].dims[1];
         } else {
-            cell_w = output[output_index].width;
-            cell_h = output[output_index].height;
+            cell_w = output[output_index].dims[3];
+            cell_h = output[output_index].dims[2];
         }
         scale_w = ctx->scale_width;
         scale_h = ctx->scale_height;
@@ -205,14 +205,14 @@ static int dnn_detect_parse_yolo_output(AVFrame *frame, DNNData *output, int out
         return AVERROR(EINVAL);
     }
 
-    if (output[output_index].channels * output[output_index].width *
-            output[output_index].height % (box_size * cell_w * cell_h)) {
+    if (output[output_index].dims[1] * output[output_index].dims[2] *
+            output[output_index].dims[3] % (box_size * cell_w * cell_h)) {
         av_log(filter_ctx, AV_LOG_ERROR, "wrong cell_w, cell_h or nb_classes\n");
         return AVERROR(EINVAL);
     }
-    detection_boxes = output[output_index].channels *
-                      output[output_index].height *
-                      output[output_index].width / box_size / cell_w / cell_h;
+    detection_boxes = output[output_index].dims[1] *
+                      output[output_index].dims[2] *
+                      output[output_index].dims[3] / box_size / cell_w / cell_h;
 
     anchors = anchors + (detection_boxes * output_index * 2);
     /**
@@ -373,18 +373,18 @@ static int dnn_detect_post_proc_ssd(AVFrame *frame, DNNData *output, int nb_outp
     int scale_w = ctx->scale_width;
     int scale_h = ctx->scale_height;
 
-    if (nb_outputs == 1 && output->width == 7) {
-        proposal_count = output->height;
-        detect_size = output->width;
+    if (nb_outputs == 1 && output->dims[3] == 7) {
+        proposal_count = output->dims[2];
+        detect_size = output->dims[3];
         detections = output->data;
-    } else if (nb_outputs == 2 && output[0].width == 5) {
-        proposal_count = output[0].height;
-        detect_size = output[0].width;
+    } else if (nb_outputs == 2 && output[0].dims[3] == 5) {
+        proposal_count = output[0].dims[2];
+        detect_size = output[0].dims[3];
         detections = output[0].data;
         labels = output[1].data;
-    } else if (nb_outputs == 2 && output[1].width == 5) {
-        proposal_count = output[1].height;
-        detect_size = output[1].width;
+    } else if (nb_outputs == 2 && output[1].dims[3] == 5) {
+        proposal_count = output[1].dims[2];
+        detect_size = output[1].dims[3];
         detections = output[1].data;
         labels = output[0].data;
     } else {
@@ -821,15 +821,19 @@ static int config_input(AVFilterLink *inlink)
     AVFilterContext *context     = inlink->dst;
     DnnDetectContext *ctx = context->priv;
     DNNData model_input;
-    int ret;
+    int ret, width_idx, height_idx;
 
     ret = ff_dnn_get_input(&ctx->dnnctx, &model_input);
     if (ret != 0) {
         av_log(ctx, AV_LOG_ERROR, "could not get input from the model\n");
         return ret;
     }
-    ctx->scale_width = model_input.width == -1 ? inlink->w : model_input.width;
-    ctx->scale_height = model_input.height ==  -1 ? inlink->h : model_input.height;
+    width_idx = dnn_get_width_idx_by_layout(model_input.layout);
+    height_idx = dnn_get_height_idx_by_layout(model_input.layout);
+    ctx->scale_width = model_input.dims[width_idx] == -1 ? inlink->w :
+        model_input.dims[width_idx];
+    ctx->scale_height = model_input.dims[height_idx] ==  -1 ? inlink->h :
+        model_input.dims[height_idx];
 
     return 0;
 }
diff --git a/libavfilter/vf_dnn_processing.c b/libavfilter/vf_dnn_processing.c
index 6829e94585..0b70c8e024 100644
--- a/libavfilter/vf_dnn_processing.c
+++ b/libavfilter/vf_dnn_processing.c
@@ -77,22 +77,29 @@ static const enum AVPixelFormat pix_fmts[] = {
            "the frame's format %s does not match "          \
            "the model input channel %d\n",                  \
            av_get_pix_fmt_name(fmt),                        \
-           model_input->channels);
+           model_input->dims[dnn_get_channel_idx_by_layout(model_input->layout)]);
 
 static int check_modelinput_inlink(const DNNData *model_input, const AVFilterLink *inlink)
 {
     AVFilterContext *ctx   = inlink->dst;
     enum AVPixelFormat fmt = inlink->format;
+    int width_idx, height_idx;
 
+    width_idx = dnn_get_width_idx_by_layout(model_input->layout);
+    height_idx = dnn_get_height_idx_by_layout(model_input->layout);
     // the design is to add explicit scale filter before this filter
-    if (model_input->height != -1 && model_input->height != inlink->h) {
+    if (model_input->dims[height_idx] != -1 &&
+        model_input->dims[height_idx] != inlink->h) {
         av_log(ctx, AV_LOG_ERROR, "the model requires frame height %d but got %d\n",
-                                   model_input->height, inlink->h);
+                                   model_input->dims[height_idx],
+                                   inlink->h);
         return AVERROR(EIO);
     }
-    if (model_input->width != -1 && model_input->width != inlink->w) {
+    if (model_input->dims[width_idx] != -1 &&
+        model_input->dims[width_idx] != inlink->w) {
         av_log(ctx, AV_LOG_ERROR, "the model requires frame width %d but got %d\n",
-                                   model_input->width, inlink->w);
+                                   model_input->dims[width_idx],
+                                   inlink->w);
         return AVERROR(EIO);
     }
     if (model_input->dt != DNN_FLOAT) {
@@ -103,7 +110,7 @@ static int check_modelinput_inlink(const DNNData *model_input, const AVFilterLin
     switch (fmt) {
     case AV_PIX_FMT_RGB24:
     case AV_PIX_FMT_BGR24:
-        if (model_input->channels != 3) {
+        if (model_input->dims[dnn_get_channel_idx_by_layout(model_input->layout)] != 3) {
             LOG_FORMAT_CHANNEL_MISMATCH();
             return AVERROR(EIO);
         }
@@ -116,7 +123,7 @@ static int check_modelinput_inlink(const DNNData *model_input, const AVFilterLin
     case AV_PIX_FMT_YUV410P:
     case AV_PIX_FMT_YUV411P:
     case AV_PIX_FMT_NV12:
-        if (model_input->channels != 1) {
+        if (model_input->dims[dnn_get_channel_idx_by_layout(model_input->layout)] != 1) {
             LOG_FORMAT_CHANNEL_MISMATCH();
             return AVERROR(EIO);
         }



More information about the ffmpeg-cvslog mailing list