[FFmpeg-devel] [PATCH v2 3/5] opus_celt: move quantization and band decoding to opus_pvq.c
Rostislav Pehlivanov
atomnuker at gmail.com
Sat Feb 11 02:25:06 EET 2017
A huge amount can be reused by the encoder, as the only thing
which needs to be done would be to add a 10 line celt_icwrsi,
a wrapper around it (celt_alg_quant) and templating the
ff_celt_decode_band to replace entropy decoding functions
with entropy encoding.
There is no performance loss but in fact a performance gain of
around 6% which is caused by the compiler being able to optimize
the decoding more efficiently.
Signed-off-by: Rostislav Pehlivanov <atomnuker at gmail.com>
---
libavcodec/Makefile | 2 +-
libavcodec/opus.h | 10 -
libavcodec/opus_celt.c | 828 +------------------------------------------------
libavcodec/opus_celt.h | 133 ++++++++
libavcodec/opus_pvq.c | 729 +++++++++++++++++++++++++++++++++++++++++++
libavcodec/opus_pvq.h | 35 +++
6 files changed, 909 insertions(+), 828 deletions(-)
create mode 100644 libavcodec/opus_celt.h
create mode 100644 libavcodec/opus_pvq.c
create mode 100644 libavcodec/opus_pvq.h
diff --git a/libavcodec/Makefile b/libavcodec/Makefile
index 89a27a000e..c61fd7e259 100644
--- a/libavcodec/Makefile
+++ b/libavcodec/Makefile
@@ -439,7 +439,7 @@ OBJS-$(CONFIG_NELLYMOSER_ENCODER) += nellymoserenc.o nellymoser.o
OBJS-$(CONFIG_NUV_DECODER) += nuv.o rtjpeg.o
OBJS-$(CONFIG_ON2AVC_DECODER) += on2avc.o on2avcdata.o
OBJS-$(CONFIG_OPUS_DECODER) += opusdec.o opus.o opus_celt.o opus_rc.o \
- opus_silk.o opustab.o vorbis_data.o
+ opus_pvq.o opus_silk.o opustab.o vorbis_data.o
OBJS-$(CONFIG_PAF_AUDIO_DECODER) += pafaudio.o
OBJS-$(CONFIG_PAF_VIDEO_DECODER) += pafvideo.o
OBJS-$(CONFIG_PAM_DECODER) += pnmdec.o pnm.o
diff --git a/libavcodec/opus.h b/libavcodec/opus.h
index 2c3d63a7a2..be042497ea 100644
--- a/libavcodec/opus.h
+++ b/libavcodec/opus.h
@@ -43,16 +43,6 @@
#define CELT_MAX_LOG_BLOCKS 3
#define CELT_MAX_FRAME_SIZE (CELT_SHORT_BLOCKSIZE * (1 << CELT_MAX_LOG_BLOCKS))
#define CELT_MAX_BANDS 21
-#define CELT_VECTORS 11
-#define CELT_ALLOC_STEPS 6
-#define CELT_FINE_OFFSET 21
-#define CELT_MAX_FINE_BITS 8
-#define CELT_NORM_SCALE 16384
-#define CELT_QTHETA_OFFSET 4
-#define CELT_QTHETA_OFFSET_TWOPHASE 16
-#define CELT_DEEMPH_COEFF 0.85000610f
-#define CELT_POSTFILTER_MINPERIOD 15
-#define CELT_ENERGY_SILENCE (-28.0f)
#define SILK_HISTORY 322
#define SILK_MAX_LPC 16
diff --git a/libavcodec/opus_celt.c b/libavcodec/opus_celt.c
index a0f018e664..71ef8965e2 100644
--- a/libavcodec/opus_celt.c
+++ b/libavcodec/opus_celt.c
@@ -24,109 +24,9 @@
* Opus CELT decoder
*/
-#include <stdint.h>
-
-#include "libavutil/float_dsp.h"
-#include "libavutil/libm.h"
-
-#include "mdct15.h"
-#include "opus.h"
+#include "opus_celt.h"
#include "opustab.h"
-
-enum CeltSpread {
- CELT_SPREAD_NONE,
- CELT_SPREAD_LIGHT,
- CELT_SPREAD_NORMAL,
- CELT_SPREAD_AGGRESSIVE
-};
-
-typedef struct CeltFrame {
- float energy[CELT_MAX_BANDS];
- float prev_energy[2][CELT_MAX_BANDS];
-
- uint8_t collapse_masks[CELT_MAX_BANDS];
-
- /* buffer for mdct output + postfilter */
- DECLARE_ALIGNED(32, float, buf)[2048];
-
- /* postfilter parameters */
- int pf_period_new;
- float pf_gains_new[3];
- int pf_period;
- float pf_gains[3];
- int pf_period_old;
- float pf_gains_old[3];
-
- float deemph_coeff;
-} CeltFrame;
-
-struct CeltContext {
- // constant values that do not change during context lifetime
- AVCodecContext *avctx;
- MDCT15Context *imdct[4];
- AVFloatDSPContext *dsp;
- int output_channels;
-
- // values that have inter-frame effect and must be reset on flush
- CeltFrame frame[2];
- uint32_t seed;
- int flushed;
-
- // values that only affect a single frame
- int coded_channels;
- int framebits;
- int duration;
-
- /* number of iMDCT blocks in the frame */
- int blocks;
- /* size of each block */
- int blocksize;
-
- int startband;
- int endband;
- int codedbands;
-
- int anticollapse_bit;
-
- int intensitystereo;
- int dualstereo;
- enum CeltSpread spread;
-
- int remaining;
- int remaining2;
- int fine_bits [CELT_MAX_BANDS];
- int fine_priority[CELT_MAX_BANDS];
- int pulses [CELT_MAX_BANDS];
- int tf_change [CELT_MAX_BANDS];
-
- DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE];
- DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(ff_celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS
-};
-
-static inline int16_t celt_cos(int16_t x)
-{
- x = (MUL16(x, x) + 4096) >> 13;
- x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
- return 1+x;
-}
-
-static inline int celt_log2tan(int isin, int icos)
-{
- int lc, ls;
- lc = opus_ilog(icos);
- ls = opus_ilog(isin);
- icos <<= 15 - lc;
- isin <<= 15 - ls;
- return (ls << 11) - (lc << 11) +
- ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
- ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
-}
-
-static inline uint32_t celt_rng(CeltContext *s)
-{
- s->seed = 1664525 * s->seed + 1013904223;
- return s->seed;
-}
+#include "opus_pvq.h"
static void celt_decode_coarse_energy(CeltContext *s, OpusRangeCoder *rc)
{
@@ -579,711 +479,6 @@ static void celt_decode_allocation(CeltContext *s, OpusRangeCoder *rc)
}
}
-static inline int celt_bits2pulses(const uint8_t *cache, int bits)
-{
- // TODO: Find the size of cache and make it into an array in the parameters list
- int i, low = 0, high;
-
- high = cache[0];
- bits--;
-
- for (i = 0; i < 6; i++) {
- int center = (low + high + 1) >> 1;
- if (cache[center] >= bits)
- high = center;
- else
- low = center;
- }
-
- return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
-}
-
-static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
-{
- // TODO: Find the size of cache and make it into an array in the parameters list
- return (pulses == 0) ? 0 : cache[pulses] + 1;
-}
-
-static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
- int N, float g)
-{
- int i;
- for (i = 0; i < N; i++)
- X[i] = g * iy[i];
-}
-
-static void celt_exp_rotation1(float *X, unsigned int len, unsigned int stride,
- float c, float s)
-{
- float *Xptr;
- int i;
-
- Xptr = X;
- for (i = 0; i < len - stride; i++) {
- float x1, x2;
- x1 = Xptr[0];
- x2 = Xptr[stride];
- Xptr[stride] = c * x2 + s * x1;
- *Xptr++ = c * x1 - s * x2;
- }
-
- Xptr = &X[len - 2 * stride - 1];
- for (i = len - 2 * stride - 1; i >= 0; i--) {
- float x1, x2;
- x1 = Xptr[0];
- x2 = Xptr[stride];
- Xptr[stride] = c * x2 + s * x1;
- *Xptr-- = c * x1 - s * x2;
- }
-}
-
-static inline void celt_exp_rotation(float *X, unsigned int len,
- unsigned int stride, unsigned int K,
- enum CeltSpread spread)
-{
- unsigned int stride2 = 0;
- float c, s;
- float gain, theta;
- int i;
-
- if (2*K >= len || spread == CELT_SPREAD_NONE)
- return;
-
- gain = (float)len / (len + (20 - 5*spread) * K);
- theta = M_PI * gain * gain / 4;
-
- c = cos(theta);
- s = sin(theta);
-
- if (len >= stride << 3) {
- stride2 = 1;
- /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
- It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
- while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
- stride2++;
- }
-
- /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
- extract_collapse_mask().*/
- len /= stride;
- for (i = 0; i < stride; i++) {
- if (stride2)
- celt_exp_rotation1(X + i * len, len, stride2, s, c);
- celt_exp_rotation1(X + i * len, len, 1, c, s);
- }
-}
-
-static inline unsigned int celt_extract_collapse_mask(const int *iy,
- unsigned int N,
- unsigned int B)
-{
- unsigned int collapse_mask;
- int N0;
- int i, j;
-
- if (B <= 1)
- return 1;
-
- /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
- exp_rotation().*/
- N0 = N/B;
- collapse_mask = 0;
- for (i = 0; i < B; i++)
- for (j = 0; j < N0; j++)
- collapse_mask |= (iy[i*N0+j]!=0)<<i;
- return collapse_mask;
-}
-
-static inline void celt_renormalize_vector(float *X, int N, float gain)
-{
- int i;
- float g = 1e-15f;
- for (i = 0; i < N; i++)
- g += X[i] * X[i];
- g = gain / sqrtf(g);
-
- for (i = 0; i < N; i++)
- X[i] *= g;
-}
-
-static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
-{
- int i;
- float xp = 0, side = 0;
- float E[2];
- float mid2;
- float t, gain[2];
-
- /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
- for (i = 0; i < N; i++) {
- xp += X[i] * Y[i];
- side += Y[i] * Y[i];
- }
-
- /* Compensating for the mid normalization */
- xp *= mid;
- mid2 = mid;
- E[0] = mid2 * mid2 + side - 2 * xp;
- E[1] = mid2 * mid2 + side + 2 * xp;
- if (E[0] < 6e-4f || E[1] < 6e-4f) {
- for (i = 0; i < N; i++)
- Y[i] = X[i];
- return;
- }
-
- t = E[0];
- gain[0] = 1.0f / sqrtf(t);
- t = E[1];
- gain[1] = 1.0f / sqrtf(t);
-
- for (i = 0; i < N; i++) {
- float value[2];
- /* Apply mid scaling (side is already scaled) */
- value[0] = mid * X[i];
- value[1] = Y[i];
- X[i] = gain[0] * (value[0] - value[1]);
- Y[i] = gain[1] * (value[0] + value[1]);
- }
-}
-
-static void celt_interleave_hadamard(float *tmp, float *X, int N0,
- int stride, int hadamard)
-{
- int i, j;
- int N = N0*stride;
-
- if (hadamard) {
- const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
- for (i = 0; i < stride; i++)
- for (j = 0; j < N0; j++)
- tmp[j*stride+i] = X[ordery[i]*N0+j];
- } else {
- for (i = 0; i < stride; i++)
- for (j = 0; j < N0; j++)
- tmp[j*stride+i] = X[i*N0+j];
- }
-
- for (i = 0; i < N; i++)
- X[i] = tmp[i];
-}
-
-static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
- int stride, int hadamard)
-{
- int i, j;
- int N = N0*stride;
-
- if (hadamard) {
- const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
- for (i = 0; i < stride; i++)
- for (j = 0; j < N0; j++)
- tmp[ordery[i]*N0+j] = X[j*stride+i];
- } else {
- for (i = 0; i < stride; i++)
- for (j = 0; j < N0; j++)
- tmp[i*N0+j] = X[j*stride+i];
- }
-
- for (i = 0; i < N; i++)
- X[i] = tmp[i];
-}
-
-static void celt_haar1(float *X, int N0, int stride)
-{
- int i, j;
- N0 >>= 1;
- for (i = 0; i < stride; i++) {
- for (j = 0; j < N0; j++) {
- float x0 = X[stride * (2 * j + 0) + i];
- float x1 = X[stride * (2 * j + 1) + i];
- X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
- X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
- }
- }
-}
-
-static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
- int dualstereo)
-{
- int qn, qb;
- int N2 = 2 * N - 1;
- if (dualstereo && N == 2)
- N2--;
-
- /* The upper limit ensures that in a stereo split with itheta==16384, we'll
- * always have enough bits left over to code at least one pulse in the
- * side; otherwise it would collapse, since it doesn't get folded. */
- qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
- qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
- return qn;
-}
-
-// this code was adapted from libopus
-static inline uint64_t celt_cwrsi(unsigned int N, unsigned int K, unsigned int i, int *y)
-{
- uint64_t norm = 0;
- uint32_t p;
- int s, val;
- int k0;
-
- while (N > 2) {
- uint32_t q;
-
- /*Lots of pulses case:*/
- if (K >= N) {
- const uint32_t *row = ff_celt_pvq_u_row[N];
-
- /* Are the pulses in this dimension negative? */
- p = row[K + 1];
- s = -(i >= p);
- i -= p & s;
-
- /*Count how many pulses were placed in this dimension.*/
- k0 = K;
- q = row[N];
- if (q > i) {
- K = N;
- do {
- p = ff_celt_pvq_u_row[--K][N];
- } while (p > i);
- } else
- for (p = row[K]; p > i; p = row[K])
- K--;
-
- i -= p;
- val = (k0 - K + s) ^ s;
- norm += val * val;
- *y++ = val;
- } else { /*Lots of dimensions case:*/
- /*Are there any pulses in this dimension at all?*/
- p = ff_celt_pvq_u_row[K ][N];
- q = ff_celt_pvq_u_row[K + 1][N];
-
- if (p <= i && i < q) {
- i -= p;
- *y++ = 0;
- } else {
- /*Are the pulses in this dimension negative?*/
- s = -(i >= q);
- i -= q & s;
-
- /*Count how many pulses were placed in this dimension.*/
- k0 = K;
- do p = ff_celt_pvq_u_row[--K][N];
- while (p > i);
-
- i -= p;
- val = (k0 - K + s) ^ s;
- norm += val * val;
- *y++ = val;
- }
- }
- N--;
- }
-
- /* N == 2 */
- p = 2 * K + 1;
- s = -(i >= p);
- i -= p & s;
- k0 = K;
- K = (i + 1) / 2;
-
- if (K)
- i -= 2 * K - 1;
-
- val = (k0 - K + s) ^ s;
- norm += val * val;
- *y++ = val;
-
- /* N==1 */
- s = -i;
- val = (K + s) ^ s;
- norm += val * val;
- *y = val;
-
- return norm;
-}
-
-static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, unsigned int N, unsigned int K)
-{
- unsigned int idx;
-#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
-#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
- idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
- return celt_cwrsi(N, K, idx, y);
-}
-
-/** Decode pulse vector and combine the result with the pitch vector to produce
- the final normalised signal in the current band. */
-static inline unsigned int celt_alg_unquant(OpusRangeCoder *rc, float *X,
- unsigned int N, unsigned int K,
- enum CeltSpread spread,
- unsigned int blocks, float gain)
-{
- int y[176];
-
- gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
- celt_normalize_residual(y, X, N, gain);
- celt_exp_rotation(X, N, blocks, K, spread);
- return celt_extract_collapse_mask(y, N, blocks);
-}
-
-static unsigned int celt_decode_band(CeltContext *s, OpusRangeCoder *rc,
- const int band, float *X, float *Y,
- int N, int b, unsigned int blocks,
- float *lowband, int duration,
- float *lowband_out, int level,
- float gain, float *lowband_scratch,
- int fill)
-{
- const uint8_t *cache;
- int dualstereo, split;
- int imid = 0, iside = 0;
- unsigned int N0 = N;
- int N_B;
- int N_B0;
- int B0 = blocks;
- int time_divide = 0;
- int recombine = 0;
- int inv = 0;
- float mid = 0, side = 0;
- int longblocks = (B0 == 1);
- unsigned int cm = 0;
-
- N_B0 = N_B = N / blocks;
- split = dualstereo = (Y != NULL);
-
- if (N == 1) {
- /* special case for one sample */
- int i;
- float *x = X;
- for (i = 0; i <= dualstereo; i++) {
- int sign = 0;
- if (s->remaining2 >= 1<<3) {
- sign = ff_opus_rc_get_raw(rc, 1);
- s->remaining2 -= 1 << 3;
- b -= 1 << 3;
- }
- x[0] = sign ? -1.0f : 1.0f;
- x = Y;
- }
- if (lowband_out)
- lowband_out[0] = X[0];
- return 1;
- }
-
- if (!dualstereo && level == 0) {
- int tf_change = s->tf_change[band];
- int k;
- if (tf_change > 0)
- recombine = tf_change;
- /* Band recombining to increase frequency resolution */
-
- if (lowband &&
- (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
- int j;
- for (j = 0; j < N; j++)
- lowband_scratch[j] = lowband[j];
- lowband = lowband_scratch;
- }
-
- for (k = 0; k < recombine; k++) {
- if (lowband)
- celt_haar1(lowband, N >> k, 1 << k);
- fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
- }
- blocks >>= recombine;
- N_B <<= recombine;
-
- /* Increasing the time resolution */
- while ((N_B & 1) == 0 && tf_change < 0) {
- if (lowband)
- celt_haar1(lowband, N_B, blocks);
- fill |= fill << blocks;
- blocks <<= 1;
- N_B >>= 1;
- time_divide++;
- tf_change++;
- }
- B0 = blocks;
- N_B0 = N_B;
-
- /* Reorganize the samples in time order instead of frequency order */
- if (B0 > 1 && lowband)
- celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine,
- B0 << recombine, longblocks);
- }
-
- /* If we need 1.5 more bit than we can produce, split the band in two. */
- cache = ff_celt_cache_bits +
- ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
- if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
- N >>= 1;
- Y = X + N;
- split = 1;
- duration -= 1;
- if (blocks == 1)
- fill = (fill & 1) | (fill << 1);
- blocks = (blocks + 1) >> 1;
- }
-
- if (split) {
- int qn;
- int itheta = 0;
- int mbits, sbits, delta;
- int qalloc;
- int pulse_cap;
- int offset;
- int orig_fill;
- int tell;
-
- /* Decide on the resolution to give to the split parameter theta */
- pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
- offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
- CELT_QTHETA_OFFSET);
- qn = (dualstereo && band >= s->intensitystereo) ? 1 :
- celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
- tell = opus_rc_tell_frac(rc);
- if (qn != 1) {
- /* Entropy coding of the angle. We use a uniform pdf for the
- time split, a step for stereo, and a triangular one for the rest. */
- if (dualstereo && N > 2)
- itheta = ff_opus_rc_dec_uint_step(rc, qn/2);
- else if (dualstereo || B0 > 1)
- itheta = ff_opus_rc_dec_uint(rc, qn+1);
- else
- itheta = ff_opus_rc_dec_uint_tri(rc, qn);
- itheta = itheta * 16384 / qn;
- /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
- Let's do that at higher complexity */
- } else if (dualstereo) {
- inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
- itheta = 0;
- }
- qalloc = opus_rc_tell_frac(rc) - tell;
- b -= qalloc;
-
- orig_fill = fill;
- if (itheta == 0) {
- imid = 32767;
- iside = 0;
- fill = av_mod_uintp2(fill, blocks);
- delta = -16384;
- } else if (itheta == 16384) {
- imid = 0;
- iside = 32767;
- fill &= ((1 << blocks) - 1) << blocks;
- delta = 16384;
- } else {
- imid = celt_cos(itheta);
- iside = celt_cos(16384-itheta);
- /* This is the mid vs side allocation that minimizes squared error
- in that band. */
- delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
- }
-
- mid = imid / 32768.0f;
- side = iside / 32768.0f;
-
- /* This is a special case for N=2 that only works for stereo and takes
- advantage of the fact that mid and side are orthogonal to encode
- the side with just one bit. */
- if (N == 2 && dualstereo) {
- int c;
- int sign = 0;
- float tmp;
- float *x2, *y2;
- mbits = b;
- /* Only need one bit for the side */
- sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
- mbits -= sbits;
- c = (itheta > 8192);
- s->remaining2 -= qalloc+sbits;
-
- x2 = c ? Y : X;
- y2 = c ? X : Y;
- if (sbits)
- sign = ff_opus_rc_get_raw(rc, 1);
- sign = 1 - 2 * sign;
- /* We use orig_fill here because we want to fold the side, but if
- itheta==16384, we'll have cleared the low bits of fill. */
- cm = celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks,
- lowband, duration, lowband_out, level, gain,
- lowband_scratch, orig_fill);
- /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
- and there's no need to worry about mixing with the other channel. */
- y2[0] = -sign * x2[1];
- y2[1] = sign * x2[0];
- X[0] *= mid;
- X[1] *= mid;
- Y[0] *= side;
- Y[1] *= side;
- tmp = X[0];
- X[0] = tmp - Y[0];
- Y[0] = tmp + Y[0];
- tmp = X[1];
- X[1] = tmp - Y[1];
- Y[1] = tmp + Y[1];
- } else {
- /* "Normal" split code */
- float *next_lowband2 = NULL;
- float *next_lowband_out1 = NULL;
- int next_level = 0;
- int rebalance;
-
- /* Give more bits to low-energy MDCTs than they would
- * otherwise deserve */
- if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
- if (itheta > 8192)
- /* Rough approximation for pre-echo masking */
- delta -= delta >> (4 - duration);
- else
- /* Corresponds to a forward-masking slope of
- * 1.5 dB per 10 ms */
- delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
- }
- mbits = av_clip((b - delta) / 2, 0, b);
- sbits = b - mbits;
- s->remaining2 -= qalloc;
-
- if (lowband && !dualstereo)
- next_lowband2 = lowband + N; /* >32-bit split case */
-
- /* Only stereo needs to pass on lowband_out.
- * Otherwise, it's handled at the end */
- if (dualstereo)
- next_lowband_out1 = lowband_out;
- else
- next_level = level + 1;
-
- rebalance = s->remaining2;
- if (mbits >= sbits) {
- /* In stereo mode, we do not apply a scaling to the mid
- * because we need the normalized mid for folding later */
- cm = celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
- lowband, duration, next_lowband_out1,
- next_level, dualstereo ? 1.0f : (gain * mid),
- lowband_scratch, fill);
-
- rebalance = mbits - (rebalance - s->remaining2);
- if (rebalance > 3 << 3 && itheta != 0)
- sbits += rebalance - (3 << 3);
-
- /* For a stereo split, the high bits of fill are always zero,
- * so no folding will be done to the side. */
- cm |= celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
- next_lowband2, duration, NULL,
- next_level, gain * side, NULL,
- fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
- } else {
- /* For a stereo split, the high bits of fill are always zero,
- * so no folding will be done to the side. */
- cm = celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
- next_lowband2, duration, NULL,
- next_level, gain * side, NULL,
- fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
-
- rebalance = sbits - (rebalance - s->remaining2);
- if (rebalance > 3 << 3 && itheta != 16384)
- mbits += rebalance - (3 << 3);
-
- /* In stereo mode, we do not apply a scaling to the mid because
- * we need the normalized mid for folding later */
- cm |= celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
- lowband, duration, next_lowband_out1,
- next_level, dualstereo ? 1.0f : (gain * mid),
- lowband_scratch, fill);
- }
- }
- } else {
- /* This is the basic no-split case */
- unsigned int q = celt_bits2pulses(cache, b);
- unsigned int curr_bits = celt_pulses2bits(cache, q);
- s->remaining2 -= curr_bits;
-
- /* Ensures we can never bust the budget */
- while (s->remaining2 < 0 && q > 0) {
- s->remaining2 += curr_bits;
- curr_bits = celt_pulses2bits(cache, --q);
- s->remaining2 -= curr_bits;
- }
-
- if (q != 0) {
- /* Finally do the actual quantization */
- cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
- s->spread, blocks, gain);
- } else {
- /* If there's no pulse, fill the band anyway */
- int j;
- unsigned int cm_mask = (1 << blocks) - 1;
- fill &= cm_mask;
- if (!fill) {
- for (j = 0; j < N; j++)
- X[j] = 0.0f;
- } else {
- if (!lowband) {
- /* Noise */
- for (j = 0; j < N; j++)
- X[j] = (((int32_t)celt_rng(s)) >> 20);
- cm = cm_mask;
- } else {
- /* Folded spectrum */
- for (j = 0; j < N; j++) {
- /* About 48 dB below the "normal" folding level */
- X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
- }
- cm = fill;
- }
- celt_renormalize_vector(X, N, gain);
- }
- }
- }
-
- /* This code is used by the decoder and by the resynthesis-enabled encoder */
- if (dualstereo) {
- int j;
- if (N != 2)
- celt_stereo_merge(X, Y, mid, N);
- if (inv) {
- for (j = 0; j < N; j++)
- Y[j] *= -1;
- }
- } else if (level == 0) {
- int k;
-
- /* Undo the sample reorganization going from time order to frequency order */
- if (B0 > 1)
- celt_interleave_hadamard(s->scratch, X, N_B>>recombine,
- B0<<recombine, longblocks);
-
- /* Undo time-freq changes that we did earlier */
- N_B = N_B0;
- blocks = B0;
- for (k = 0; k < time_divide; k++) {
- blocks >>= 1;
- N_B <<= 1;
- cm |= cm >> blocks;
- celt_haar1(X, N_B, blocks);
- }
-
- for (k = 0; k < recombine; k++) {
- cm = ff_celt_bit_deinterleave[cm];
- celt_haar1(X, N0>>k, 1<<k);
- }
- blocks <<= recombine;
-
- /* Scale output for later folding */
- if (lowband_out) {
- int j;
- float n = sqrtf(N0);
- for (j = 0; j < N0; j++)
- lowband_out[j] = n * X[j];
- }
- cm = av_mod_uintp2(cm, blocks);
- }
- return cm;
-}
-
static void celt_denormalize(CeltContext *s, CeltFrame *frame, float *data)
{
int i, j;
@@ -1562,18 +757,17 @@ static void celt_decode_bands(CeltContext *s, OpusRangeCoder *rc)
}
if (s->dualstereo) {
- cm[0] = celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks,
- effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
- norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
+ cm[0] = ff_celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks,
+ effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
+ norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
- cm[1] = celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks,
- effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration,
- norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
+ cm[1] = ff_celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks,
+ effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration,
+ norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
} else {
- cm[0] = celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks,
- effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
- norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
-
+ cm[0] = ff_celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks,
+ effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
+ norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
cm[1] = cm[0];
}
diff --git a/libavcodec/opus_celt.h b/libavcodec/opus_celt.h
new file mode 100644
index 0000000000..e9b5946642
--- /dev/null
+++ b/libavcodec/opus_celt.h
@@ -0,0 +1,133 @@
+/*
+ * Opus decoder/demuxer common functions
+ * Copyright (c) 2012 Andrew D'Addesio
+ * Copyright (c) 2013-2014 Mozilla Corporation
+ * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker at gmail.com>
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#ifndef AVCODEC_OPUS_CELT_H
+#define AVCODEC_OPUS_CELT_H
+
+#include "opus.h"
+
+#include "mdct15.h"
+#include "libavutil/float_dsp.h"
+#include "libavutil/libm.h"
+
+#define CELT_VECTORS 11
+#define CELT_ALLOC_STEPS 6
+#define CELT_FINE_OFFSET 21
+#define CELT_MAX_FINE_BITS 8
+#define CELT_NORM_SCALE 16384
+#define CELT_QTHETA_OFFSET 4
+#define CELT_QTHETA_OFFSET_TWOPHASE 16
+#define CELT_DEEMPH_COEFF 0.85000610f
+#define CELT_POSTFILTER_MINPERIOD 15
+#define CELT_ENERGY_SILENCE (-28.0f)
+
+enum CeltSpread {
+ CELT_SPREAD_NONE,
+ CELT_SPREAD_LIGHT,
+ CELT_SPREAD_NORMAL,
+ CELT_SPREAD_AGGRESSIVE
+};
+
+typedef struct CeltFrame {
+ float energy[CELT_MAX_BANDS];
+ float prev_energy[2][CELT_MAX_BANDS];
+
+ uint8_t collapse_masks[CELT_MAX_BANDS];
+
+ /* buffer for mdct output + postfilter */
+ DECLARE_ALIGNED(32, float, buf)[2048];
+
+ /* postfilter parameters */
+ int pf_period_new;
+ float pf_gains_new[3];
+ int pf_period;
+ float pf_gains[3];
+ int pf_period_old;
+ float pf_gains_old[3];
+
+ float deemph_coeff;
+} CeltFrame;
+
+struct CeltContext {
+ // constant values that do not change during context lifetime
+ AVCodecContext *avctx;
+ MDCT15Context *imdct[4];
+ AVFloatDSPContext *dsp;
+ int output_channels;
+
+ // values that have inter-frame effect and must be reset on flush
+ CeltFrame frame[2];
+ uint32_t seed;
+ int flushed;
+
+ // values that only affect a single frame
+ int coded_channels;
+ int framebits;
+ int duration;
+
+ /* number of iMDCT blocks in the frame */
+ int blocks;
+ /* size of each block */
+ int blocksize;
+
+ int startband;
+ int endband;
+ int codedbands;
+
+ int anticollapse_bit;
+
+ int intensitystereo;
+ int dualstereo;
+ enum CeltSpread spread;
+
+ int remaining;
+ int remaining2;
+ int fine_bits [CELT_MAX_BANDS];
+ int fine_priority[CELT_MAX_BANDS];
+ int pulses [CELT_MAX_BANDS];
+ int tf_change [CELT_MAX_BANDS];
+
+ DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE];
+ DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(ff_celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS
+};
+
+/* LCG for noise generation */
+static av_always_inline uint32_t celt_rng(CeltContext *s)
+{
+ s->seed = 1664525 * s->seed + 1013904223;
+ return s->seed;
+}
+
+static av_always_inline void celt_renormalize_vector(float *X, int N, float gain)
+{
+ int i;
+ float g = 1e-15f;
+ for (i = 0; i < N; i++)
+ g += X[i] * X[i];
+ g = gain / sqrtf(g);
+
+ for (i = 0; i < N; i++)
+ X[i] *= g;
+}
+
+#endif /* AVCODEC_OPUS_CELT_H */
diff --git a/libavcodec/opus_pvq.c b/libavcodec/opus_pvq.c
new file mode 100644
index 0000000000..b4e23c86b8
--- /dev/null
+++ b/libavcodec/opus_pvq.c
@@ -0,0 +1,729 @@
+/*
+ * Copyright (c) 2012 Andrew D'Addesio
+ * Copyright (c) 2013-2014 Mozilla Corporation
+ * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker at gmail.com>
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "opustab.h"
+#include "opus_pvq.h"
+
+#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
+#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
+
+static inline int16_t celt_cos(int16_t x)
+{
+ x = (MUL16(x, x) + 4096) >> 13;
+ x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
+ return 1+x;
+}
+
+static inline int celt_log2tan(int isin, int icos)
+{
+ int lc, ls;
+ lc = opus_ilog(icos);
+ ls = opus_ilog(isin);
+ icos <<= 15 - lc;
+ isin <<= 15 - ls;
+ return (ls << 11) - (lc << 11) +
+ ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
+ ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
+}
+
+static inline int celt_bits2pulses(const uint8_t *cache, int bits)
+{
+ // TODO: Find the size of cache and make it into an array in the parameters list
+ int i, low = 0, high;
+
+ high = cache[0];
+ bits--;
+
+ for (i = 0; i < 6; i++) {
+ int center = (low + high + 1) >> 1;
+ if (cache[center] >= bits)
+ high = center;
+ else
+ low = center;
+ }
+
+ return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
+}
+
+static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
+{
+ // TODO: Find the size of cache and make it into an array in the parameters list
+ return (pulses == 0) ? 0 : cache[pulses] + 1;
+}
+
+static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
+ int N, float g)
+{
+ int i;
+ for (i = 0; i < N; i++)
+ X[i] = g * iy[i];
+}
+
+static void celt_exp_rotation1(float *X, uint32_t len, uint32_t stride,
+ float c, float s)
+{
+ float *Xptr;
+ int i;
+
+ Xptr = X;
+ for (i = 0; i < len - stride; i++) {
+ float x1, x2;
+ x1 = Xptr[0];
+ x2 = Xptr[stride];
+ Xptr[stride] = c * x2 + s * x1;
+ *Xptr++ = c * x1 - s * x2;
+ }
+
+ Xptr = &X[len - 2 * stride - 1];
+ for (i = len - 2 * stride - 1; i >= 0; i--) {
+ float x1, x2;
+ x1 = Xptr[0];
+ x2 = Xptr[stride];
+ Xptr[stride] = c * x2 + s * x1;
+ *Xptr-- = c * x1 - s * x2;
+ }
+}
+
+static inline void celt_exp_rotation(float *X, uint32_t len,
+ uint32_t stride, uint32_t K,
+ enum CeltSpread spread)
+{
+ uint32_t stride2 = 0;
+ float c, s;
+ float gain, theta;
+ int i;
+
+ if (2*K >= len || spread == CELT_SPREAD_NONE)
+ return;
+
+ gain = (float)len / (len + (20 - 5*spread) * K);
+ theta = M_PI * gain * gain / 4;
+
+ c = cosf(theta);
+ s = sinf(theta);
+
+ if (len >= stride << 3) {
+ stride2 = 1;
+ /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
+ It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
+ while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
+ stride2++;
+ }
+
+ /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
+ extract_collapse_mask().*/
+ len /= stride;
+ for (i = 0; i < stride; i++) {
+ if (stride2)
+ celt_exp_rotation1(X + i * len, len, stride2, s, c);
+ celt_exp_rotation1(X + i * len, len, 1, c, s);
+ }
+}
+
+static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B)
+{
+ uint32_t collapse_mask;
+ int N0;
+ int i, j;
+
+ if (B <= 1)
+ return 1;
+
+ /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
+ exp_rotation().*/
+ N0 = N/B;
+ collapse_mask = 0;
+ for (i = 0; i < B; i++)
+ for (j = 0; j < N0; j++)
+ collapse_mask |= (iy[i*N0+j]!=0)<<i;
+ return collapse_mask;
+}
+
+static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
+{
+ int i;
+ float xp = 0, side = 0;
+ float E[2];
+ float mid2;
+ float t, gain[2];
+
+ /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
+ for (i = 0; i < N; i++) {
+ xp += X[i] * Y[i];
+ side += Y[i] * Y[i];
+ }
+
+ /* Compensating for the mid normalization */
+ xp *= mid;
+ mid2 = mid;
+ E[0] = mid2 * mid2 + side - 2 * xp;
+ E[1] = mid2 * mid2 + side + 2 * xp;
+ if (E[0] < 6e-4f || E[1] < 6e-4f) {
+ for (i = 0; i < N; i++)
+ Y[i] = X[i];
+ return;
+ }
+
+ t = E[0];
+ gain[0] = 1.0f / sqrtf(t);
+ t = E[1];
+ gain[1] = 1.0f / sqrtf(t);
+
+ for (i = 0; i < N; i++) {
+ float value[2];
+ /* Apply mid scaling (side is already scaled) */
+ value[0] = mid * X[i];
+ value[1] = Y[i];
+ X[i] = gain[0] * (value[0] - value[1]);
+ Y[i] = gain[1] * (value[0] + value[1]);
+ }
+}
+
+static void celt_interleave_hadamard(float *tmp, float *X, int N0,
+ int stride, int hadamard)
+{
+ int i, j;
+ int N = N0*stride;
+
+ if (hadamard) {
+ const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
+ for (i = 0; i < stride; i++)
+ for (j = 0; j < N0; j++)
+ tmp[j*stride+i] = X[ordery[i]*N0+j];
+ } else {
+ for (i = 0; i < stride; i++)
+ for (j = 0; j < N0; j++)
+ tmp[j*stride+i] = X[i*N0+j];
+ }
+
+ for (i = 0; i < N; i++)
+ X[i] = tmp[i];
+}
+
+static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
+ int stride, int hadamard)
+{
+ int i, j;
+ int N = N0*stride;
+
+ if (hadamard) {
+ const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
+ for (i = 0; i < stride; i++)
+ for (j = 0; j < N0; j++)
+ tmp[ordery[i]*N0+j] = X[j*stride+i];
+ } else {
+ for (i = 0; i < stride; i++)
+ for (j = 0; j < N0; j++)
+ tmp[i*N0+j] = X[j*stride+i];
+ }
+
+ for (i = 0; i < N; i++)
+ X[i] = tmp[i];
+}
+
+static void celt_haar1(float *X, int N0, int stride)
+{
+ int i, j;
+ N0 >>= 1;
+ for (i = 0; i < stride; i++) {
+ for (j = 0; j < N0; j++) {
+ float x0 = X[stride * (2 * j + 0) + i];
+ float x1 = X[stride * (2 * j + 1) + i];
+ X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
+ X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
+ }
+ }
+}
+
+static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
+ int dualstereo)
+{
+ int qn, qb;
+ int N2 = 2 * N - 1;
+ if (dualstereo && N == 2)
+ N2--;
+
+ /* The upper limit ensures that in a stereo split with itheta==16384, we'll
+ * always have enough bits left over to code at least one pulse in the
+ * side; otherwise it would collapse, since it doesn't get folded. */
+ qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
+ qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
+ return qn;
+}
+
+// this code was adapted from libopus
+static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y)
+{
+ uint64_t norm = 0;
+ uint32_t p;
+ int s, val;
+ int k0;
+
+ while (N > 2) {
+ uint32_t q;
+
+ /*Lots of pulses case:*/
+ if (K >= N) {
+ const uint32_t *row = ff_celt_pvq_u_row[N];
+
+ /* Are the pulses in this dimension negative? */
+ p = row[K + 1];
+ s = -(i >= p);
+ i -= p & s;
+
+ /*Count how many pulses were placed in this dimension.*/
+ k0 = K;
+ q = row[N];
+ if (q > i) {
+ K = N;
+ do {
+ p = ff_celt_pvq_u_row[--K][N];
+ } while (p > i);
+ } else
+ for (p = row[K]; p > i; p = row[K])
+ K--;
+
+ i -= p;
+ val = (k0 - K + s) ^ s;
+ norm += val * val;
+ *y++ = val;
+ } else { /*Lots of dimensions case:*/
+ /*Are there any pulses in this dimension at all?*/
+ p = ff_celt_pvq_u_row[K ][N];
+ q = ff_celt_pvq_u_row[K + 1][N];
+
+ if (p <= i && i < q) {
+ i -= p;
+ *y++ = 0;
+ } else {
+ /*Are the pulses in this dimension negative?*/
+ s = -(i >= q);
+ i -= q & s;
+
+ /*Count how many pulses were placed in this dimension.*/
+ k0 = K;
+ do p = ff_celt_pvq_u_row[--K][N];
+ while (p > i);
+
+ i -= p;
+ val = (k0 - K + s) ^ s;
+ norm += val * val;
+ *y++ = val;
+ }
+ }
+ N--;
+ }
+
+ /* N == 2 */
+ p = 2 * K + 1;
+ s = -(i >= p);
+ i -= p & s;
+ k0 = K;
+ K = (i + 1) / 2;
+
+ if (K)
+ i -= 2 * K - 1;
+
+ val = (k0 - K + s) ^ s;
+ norm += val * val;
+ *y++ = val;
+
+ /* N==1 */
+ s = -i;
+ val = (K + s) ^ s;
+ norm += val * val;
+ *y = val;
+
+ return norm;
+}
+
+static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
+{
+ const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
+ return celt_cwrsi(N, K, idx, y);
+}
+
+/** Decode pulse vector and combine the result with the pitch vector to produce
+ the final normalised signal in the current band. */
+static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
+ enum CeltSpread spread, uint32_t blocks, float gain)
+{
+ int y[176];
+
+ gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
+ celt_normalize_residual(y, X, N, gain);
+ celt_exp_rotation(X, N, blocks, K, spread);
+ return celt_extract_collapse_mask(y, N, blocks);
+}
+
+uint32_t ff_celt_decode_band(CeltContext *s, OpusRangeCoder *rc, const int band,
+ float *X, float *Y, int N, int b, uint32_t blocks,
+ float *lowband, int duration, float *lowband_out, int level,
+ float gain, float *lowband_scratch, int fill)
+{
+ const uint8_t *cache;
+ int dualstereo, split;
+ int imid = 0, iside = 0;
+ uint32_t N0 = N;
+ int N_B;
+ int N_B0;
+ int B0 = blocks;
+ int time_divide = 0;
+ int recombine = 0;
+ int inv = 0;
+ float mid = 0, side = 0;
+ int longblocks = (B0 == 1);
+ uint32_t cm = 0;
+
+ N_B0 = N_B = N / blocks;
+ split = dualstereo = (Y != NULL);
+
+ if (N == 1) {
+ /* special case for one sample */
+ int i;
+ float *x = X;
+ for (i = 0; i <= dualstereo; i++) {
+ int sign = 0;
+ if (s->remaining2 >= 1<<3) {
+ sign = ff_opus_rc_get_raw(rc, 1);
+ s->remaining2 -= 1 << 3;
+ b -= 1 << 3;
+ }
+ x[0] = sign ? -1.0f : 1.0f;
+ x = Y;
+ }
+ if (lowband_out)
+ lowband_out[0] = X[0];
+ return 1;
+ }
+
+ if (!dualstereo && level == 0) {
+ int tf_change = s->tf_change[band];
+ int k;
+ if (tf_change > 0)
+ recombine = tf_change;
+ /* Band recombining to increase frequency resolution */
+
+ if (lowband &&
+ (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
+ int j;
+ for (j = 0; j < N; j++)
+ lowband_scratch[j] = lowband[j];
+ lowband = lowband_scratch;
+ }
+
+ for (k = 0; k < recombine; k++) {
+ if (lowband)
+ celt_haar1(lowband, N >> k, 1 << k);
+ fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
+ }
+ blocks >>= recombine;
+ N_B <<= recombine;
+
+ /* Increasing the time resolution */
+ while ((N_B & 1) == 0 && tf_change < 0) {
+ if (lowband)
+ celt_haar1(lowband, N_B, blocks);
+ fill |= fill << blocks;
+ blocks <<= 1;
+ N_B >>= 1;
+ time_divide++;
+ tf_change++;
+ }
+ B0 = blocks;
+ N_B0 = N_B;
+
+ /* Reorganize the samples in time order instead of frequency order */
+ if (B0 > 1 && lowband)
+ celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine,
+ B0 << recombine, longblocks);
+ }
+
+ /* If we need 1.5 more bit than we can produce, split the band in two. */
+ cache = ff_celt_cache_bits +
+ ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
+ if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
+ N >>= 1;
+ Y = X + N;
+ split = 1;
+ duration -= 1;
+ if (blocks == 1)
+ fill = (fill & 1) | (fill << 1);
+ blocks = (blocks + 1) >> 1;
+ }
+
+ if (split) {
+ int qn;
+ int itheta = 0;
+ int mbits, sbits, delta;
+ int qalloc;
+ int pulse_cap;
+ int offset;
+ int orig_fill;
+ int tell;
+
+ /* Decide on the resolution to give to the split parameter theta */
+ pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
+ offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
+ CELT_QTHETA_OFFSET);
+ qn = (dualstereo && band >= s->intensitystereo) ? 1 :
+ celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
+ tell = opus_rc_tell_frac(rc);
+ if (qn != 1) {
+ /* Entropy coding of the angle. We use a uniform pdf for the
+ time split, a step for stereo, and a triangular one for the rest. */
+ if (dualstereo && N > 2)
+ itheta = ff_opus_rc_dec_uint_step(rc, qn/2);
+ else if (dualstereo || B0 > 1)
+ itheta = ff_opus_rc_dec_uint(rc, qn+1);
+ else
+ itheta = ff_opus_rc_dec_uint_tri(rc, qn);
+ itheta = itheta * 16384 / qn;
+ /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
+ Let's do that at higher complexity */
+ } else if (dualstereo) {
+ inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
+ itheta = 0;
+ }
+ qalloc = opus_rc_tell_frac(rc) - tell;
+ b -= qalloc;
+
+ orig_fill = fill;
+ if (itheta == 0) {
+ imid = 32767;
+ iside = 0;
+ fill = av_mod_uintp2(fill, blocks);
+ delta = -16384;
+ } else if (itheta == 16384) {
+ imid = 0;
+ iside = 32767;
+ fill &= ((1 << blocks) - 1) << blocks;
+ delta = 16384;
+ } else {
+ imid = celt_cos(itheta);
+ iside = celt_cos(16384-itheta);
+ /* This is the mid vs side allocation that minimizes squared error
+ in that band. */
+ delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
+ }
+
+ mid = imid / 32768.0f;
+ side = iside / 32768.0f;
+
+ /* This is a special case for N=2 that only works for stereo and takes
+ advantage of the fact that mid and side are orthogonal to encode
+ the side with just one bit. */
+ if (N == 2 && dualstereo) {
+ int c;
+ int sign = 0;
+ float tmp;
+ float *x2, *y2;
+ mbits = b;
+ /* Only need one bit for the side */
+ sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
+ mbits -= sbits;
+ c = (itheta > 8192);
+ s->remaining2 -= qalloc+sbits;
+
+ x2 = c ? Y : X;
+ y2 = c ? X : Y;
+ if (sbits)
+ sign = ff_opus_rc_get_raw(rc, 1);
+ sign = 1 - 2 * sign;
+ /* We use orig_fill here because we want to fold the side, but if
+ itheta==16384, we'll have cleared the low bits of fill. */
+ cm = ff_celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks,
+ lowband, duration, lowband_out, level, gain,
+ lowband_scratch, orig_fill);
+ /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
+ and there's no need to worry about mixing with the other channel. */
+ y2[0] = -sign * x2[1];
+ y2[1] = sign * x2[0];
+ X[0] *= mid;
+ X[1] *= mid;
+ Y[0] *= side;
+ Y[1] *= side;
+ tmp = X[0];
+ X[0] = tmp - Y[0];
+ Y[0] = tmp + Y[0];
+ tmp = X[1];
+ X[1] = tmp - Y[1];
+ Y[1] = tmp + Y[1];
+ } else {
+ /* "Normal" split code */
+ float *next_lowband2 = NULL;
+ float *next_lowband_out1 = NULL;
+ int next_level = 0;
+ int rebalance;
+
+ /* Give more bits to low-energy MDCTs than they would
+ * otherwise deserve */
+ if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
+ if (itheta > 8192)
+ /* Rough approximation for pre-echo masking */
+ delta -= delta >> (4 - duration);
+ else
+ /* Corresponds to a forward-masking slope of
+ * 1.5 dB per 10 ms */
+ delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
+ }
+ mbits = av_clip((b - delta) / 2, 0, b);
+ sbits = b - mbits;
+ s->remaining2 -= qalloc;
+
+ if (lowband && !dualstereo)
+ next_lowband2 = lowband + N; /* >32-bit split case */
+
+ /* Only stereo needs to pass on lowband_out.
+ * Otherwise, it's handled at the end */
+ if (dualstereo)
+ next_lowband_out1 = lowband_out;
+ else
+ next_level = level + 1;
+
+ rebalance = s->remaining2;
+ if (mbits >= sbits) {
+ /* In stereo mode, we do not apply a scaling to the mid
+ * because we need the normalized mid for folding later */
+ cm = ff_celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
+ lowband, duration, next_lowband_out1,
+ next_level, dualstereo ? 1.0f : (gain * mid),
+ lowband_scratch, fill);
+
+ rebalance = mbits - (rebalance - s->remaining2);
+ if (rebalance > 3 << 3 && itheta != 0)
+ sbits += rebalance - (3 << 3);
+
+ /* For a stereo split, the high bits of fill are always zero,
+ * so no folding will be done to the side. */
+ cm |= ff_celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
+ next_lowband2, duration, NULL,
+ next_level, gain * side, NULL,
+ fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
+ } else {
+ /* For a stereo split, the high bits of fill are always zero,
+ * so no folding will be done to the side. */
+ cm = ff_celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
+ next_lowband2, duration, NULL,
+ next_level, gain * side, NULL,
+ fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
+
+ rebalance = sbits - (rebalance - s->remaining2);
+ if (rebalance > 3 << 3 && itheta != 16384)
+ mbits += rebalance - (3 << 3);
+
+ /* In stereo mode, we do not apply a scaling to the mid because
+ * we need the normalized mid for folding later */
+ cm |= ff_celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
+ lowband, duration, next_lowband_out1,
+ next_level, dualstereo ? 1.0f : (gain * mid),
+ lowband_scratch, fill);
+ }
+ }
+ } else {
+ /* This is the basic no-split case */
+ uint32_t q = celt_bits2pulses(cache, b);
+ uint32_t curr_bits = celt_pulses2bits(cache, q);
+ s->remaining2 -= curr_bits;
+
+ /* Ensures we can never bust the budget */
+ while (s->remaining2 < 0 && q > 0) {
+ s->remaining2 += curr_bits;
+ curr_bits = celt_pulses2bits(cache, --q);
+ s->remaining2 -= curr_bits;
+ }
+
+ if (q != 0) {
+ /* Finally do the actual quantization */
+ cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
+ s->spread, blocks, gain);
+ } else {
+ /* If there's no pulse, fill the band anyway */
+ int j;
+ uint32_t cm_mask = (1 << blocks) - 1;
+ fill &= cm_mask;
+ if (!fill) {
+ for (j = 0; j < N; j++)
+ X[j] = 0.0f;
+ } else {
+ if (!lowband) {
+ /* Noise */
+ for (j = 0; j < N; j++)
+ X[j] = (((int32_t)celt_rng(s)) >> 20);
+ cm = cm_mask;
+ } else {
+ /* Folded spectrum */
+ for (j = 0; j < N; j++) {
+ /* About 48 dB below the "normal" folding level */
+ X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
+ }
+ cm = fill;
+ }
+ celt_renormalize_vector(X, N, gain);
+ }
+ }
+ }
+
+ /* This code is used by the decoder and by the resynthesis-enabled encoder */
+ if (dualstereo) {
+ int j;
+ if (N != 2)
+ celt_stereo_merge(X, Y, mid, N);
+ if (inv) {
+ for (j = 0; j < N; j++)
+ Y[j] *= -1;
+ }
+ } else if (level == 0) {
+ int k;
+
+ /* Undo the sample reorganization going from time order to frequency order */
+ if (B0 > 1)
+ celt_interleave_hadamard(s->scratch, X, N_B>>recombine,
+ B0<<recombine, longblocks);
+
+ /* Undo time-freq changes that we did earlier */
+ N_B = N_B0;
+ blocks = B0;
+ for (k = 0; k < time_divide; k++) {
+ blocks >>= 1;
+ N_B <<= 1;
+ cm |= cm >> blocks;
+ celt_haar1(X, N_B, blocks);
+ }
+
+ for (k = 0; k < recombine; k++) {
+ cm = ff_celt_bit_deinterleave[cm];
+ celt_haar1(X, N0>>k, 1<<k);
+ }
+ blocks <<= recombine;
+
+ /* Scale output for later folding */
+ if (lowband_out) {
+ int j;
+ float n = sqrtf(N0);
+ for (j = 0; j < N0; j++)
+ lowband_out[j] = n * X[j];
+ }
+ cm = av_mod_uintp2(cm, blocks);
+ }
+ return cm;
+}
diff --git a/libavcodec/opus_pvq.h b/libavcodec/opus_pvq.h
new file mode 100644
index 0000000000..1083f35db9
--- /dev/null
+++ b/libavcodec/opus_pvq.h
@@ -0,0 +1,35 @@
+/*
+ * Copyright (c) 2012 Andrew D'Addesio
+ * Copyright (c) 2013-2014 Mozilla Corporation
+ * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker at gmail.com>
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#ifndef AVCODEC_OPUS_PVQ_H
+#define AVCODEC_OPUS_PVQ_H
+
+#include "opus.h"
+#include "opus_celt.h"
+
+/* Decodes a band using PVQ */
+uint32_t ff_celt_decode_band(CeltContext *s, OpusRangeCoder *rc, const int band,
+ float *X, float *Y, int N, int b, uint32_t blocks,
+ float *lowband, int duration, float *lowband_out, int level,
+ float gain, float *lowband_scratch, int fill);
+
+#endif /* AVCODEC_OPUS_PVQ_H */
--
2.11.0.483.g087da7b7c
More information about the ffmpeg-devel
mailing list