[FFmpeg-devel] [PATCH] avfilter/af_sofalizer: switch to libmysofa
Paul B Mahol
onemda at gmail.com
Sat Jun 3 15:42:59 EEST 2017
Signed-off-by: Paul B Mahol <onemda at gmail.com>
---
configure | 8 +-
doc/filters.texi | 2 +-
libavfilter/af_sofalizer.c | 700 ++++++++++++---------------------------------
3 files changed, 194 insertions(+), 516 deletions(-)
diff --git a/configure b/configure
index 72060ef..6ae838f 100755
--- a/configure
+++ b/configure
@@ -277,7 +277,7 @@ External library support:
--disable-lzma disable lzma [autodetect]
--enable-decklink enable Blackmagic DeckLink I/O support [no]
--enable-mediacodec enable Android MediaCodec support [no]
- --enable-netcdf enable NetCDF, needed for sofalizer filter [no]
+ --enable-mysofa enable libmysofa, needed for sofalizer filter [no]
--enable-openal enable OpenAL 1.1 capture support [no]
--enable-opencl enable OpenCL code
--enable-opengl enable OpenGL rendering [no]
@@ -1576,7 +1576,7 @@ EXTERNAL_LIBRARY_LIST="
libzmq
libzvbi
mediacodec
- netcdf
+ mysofa
openal
opencl
opengl
@@ -3154,7 +3154,7 @@ showspectrumpic_filter_deps="avcodec"
showspectrumpic_filter_select="fft"
signature_filter_deps="gpl avcodec avformat"
smartblur_filter_deps="gpl swscale"
-sofalizer_filter_deps="netcdf avcodec"
+sofalizer_filter_deps="mysofa avcodec"
sofalizer_filter_select="fft"
spectrumsynth_filter_deps="avcodec"
spectrumsynth_filter_select="fft"
@@ -5913,7 +5913,7 @@ enabled mmal && { check_lib mmal interface/mmal/mmal.h mmal_port_co
check_lib mmal interface/mmal/mmal.h mmal_port_connect -lmmal_core -lmmal_util -lmmal_vc_client -lbcm_host; } ||
die "ERROR: mmal not found" &&
check_func_headers interface/mmal/mmal.h "MMAL_PARAMETER_VIDEO_MAX_NUM_CALLBACKS"; }
-enabled netcdf && require_pkg_config netcdf netcdf.h nc_inq_libvers
+enabled mysofa && require libmysofa "mysofa.h" mysofa_load -lmysofa
enabled openal && { { for al_extralibs in "${OPENAL_LIBS}" "-lopenal" "-lOpenAL32"; do
check_lib openal 'AL/al.h' alGetError "${al_extralibs}" && break; done } ||
die "ERROR: openal not found"; } &&
diff --git a/doc/filters.texi b/doc/filters.texi
index d4fbb5a..3943ac4 100644
--- a/doc/filters.texi
+++ b/doc/filters.texi
@@ -3571,7 +3571,7 @@ SOFAlizer is developed at the Acoustics Research Institute (ARI) of the
Austrian Academy of Sciences.
To enable compilation of this filter you need to configure FFmpeg with
- at code{--enable-netcdf}.
+ at code{--enable-mysofa}.
The filter accepts the following options:
diff --git a/libavfilter/af_sofalizer.c b/libavfilter/af_sofalizer.c
index ef723ee..d9098d7 100644
--- a/libavfilter/af_sofalizer.c
+++ b/libavfilter/af_sofalizer.c
@@ -26,7 +26,7 @@
*****************************************************************************/
#include <math.h>
-#include <netcdf.h>
+#include <mysofa.h>
#include "libavcodec/avfft.h"
#include "libavutil/avstring.h"
@@ -41,18 +41,12 @@
#define TIME_DOMAIN 0
#define FREQUENCY_DOMAIN 1
-typedef struct NCSofa { /* contains data of one SOFA file */
- int ncid; /* netCDF ID of the opened SOFA file */
+typedef struct MySofa { /* contains data of one SOFA file */
+ struct MYSOFA_EASY *easy;
int n_samples; /* length of one impulse response (IR) */
- int m_dim; /* number of measurement positions */
- int *data_delay; /* broadband delay of each IR */
- /* all measurement positions for each receiver (i.e. ear): */
- float *sp_a; /* azimuth angles */
- float *sp_e; /* elevation angles */
- float *sp_r; /* radii */
- /* data at each measurement position for each receiver: */
- float *data_ir; /* IRs (time-domain) */
-} NCSofa;
+ float *lir, *rir; /* IRs (time-domain) */
+ int max_delay;
+} MySofa;
typedef struct VirtualSpeaker {
uint8_t set;
@@ -64,7 +58,7 @@ typedef struct SOFAlizerContext {
const AVClass *class;
char *filename; /* name of SOFA file */
- NCSofa sofa; /* contains data of the SOFA file */
+ MySofa sofa; /* contains data of the SOFA file */
int sample_rate; /* sample rate from SOFA file */
float *speaker_azim; /* azimuth of the virtual loudspeakers */
@@ -107,271 +101,33 @@ typedef struct SOFAlizerContext {
AVFloatDSPContext *fdsp;
} SOFAlizerContext;
-static int close_sofa(struct NCSofa *sofa)
+static int close_sofa(struct MySofa *sofa)
{
- av_freep(&sofa->data_delay);
- av_freep(&sofa->sp_a);
- av_freep(&sofa->sp_e);
- av_freep(&sofa->sp_r);
- av_freep(&sofa->data_ir);
- nc_close(sofa->ncid);
- sofa->ncid = 0;
+ mysofa_close(sofa->easy);
+ sofa->easy = NULL;
return 0;
}
-static int load_sofa(AVFilterContext *ctx, char *filename, int *samplingrate)
+static int preload_sofa(AVFilterContext *ctx, char *filename, int *samplingrate)
{
struct SOFAlizerContext *s = ctx->priv;
- /* variables associated with content of SOFA file: */
- int ncid, n_dims, n_vars, n_gatts, n_unlim_dim_id, status;
- char data_delay_dim_name[NC_MAX_NAME];
- float *sp_a, *sp_e, *sp_r, *data_ir;
- char *sofa_conventions;
- char dim_name[NC_MAX_NAME]; /* names of netCDF dimensions */
- size_t *dim_length; /* lengths of netCDF dimensions */
- char *text;
- unsigned int sample_rate;
- int data_delay_dim_id[2];
- int samplingrate_id;
- int data_delay_id;
- int n_samples;
- int m_dim_id = -1;
- int n_dim_id = -1;
- int data_ir_id;
- size_t att_len;
- int m_dim;
- int *data_delay;
- int sp_id;
- int i, ret;
-
- s->sofa.ncid = 0;
- status = nc_open(filename, NC_NOWRITE, &ncid); /* open SOFA file read-only */
- if (status != NC_NOERR) {
- av_log(ctx, AV_LOG_ERROR, "Can't find SOFA-file '%s'\n", filename);
- return AVERROR(EINVAL);
- }
-
- /* get number of dimensions, vars, global attributes and Id of unlimited dimensions: */
- nc_inq(ncid, &n_dims, &n_vars, &n_gatts, &n_unlim_dim_id);
-
- /* -- get number of measurements ("M") and length of one IR ("N") -- */
- dim_length = av_malloc_array(n_dims, sizeof(*dim_length));
- if (!dim_length) {
- nc_close(ncid);
- return AVERROR(ENOMEM);
- }
-
- for (i = 0; i < n_dims; i++) { /* go through all dimensions of file */
- nc_inq_dim(ncid, i, (char *)&dim_name, &dim_length[i]); /* get dimensions */
- if (!strncmp("M", (const char *)&dim_name, 1)) /* get ID of dimension "M" */
- m_dim_id = i;
- if (!strncmp("N", (const char *)&dim_name, 1)) /* get ID of dimension "N" */
- n_dim_id = i;
- }
-
- if ((m_dim_id == -1) || (n_dim_id == -1)) { /* dimension "M" or "N" couldn't be found */
- av_log(ctx, AV_LOG_ERROR, "Can't find required dimensions in SOFA file.\n");
- av_freep(&dim_length);
- nc_close(ncid);
- return AVERROR(EINVAL);
- }
-
- n_samples = dim_length[n_dim_id]; /* get length of one IR */
- m_dim = dim_length[m_dim_id]; /* get number of measurements */
-
- av_freep(&dim_length);
-
- /* -- check file type -- */
- /* get length of attritube "Conventions" */
- status = nc_inq_attlen(ncid, NC_GLOBAL, "Conventions", &att_len);
- if (status != NC_NOERR) {
- av_log(ctx, AV_LOG_ERROR, "Can't get length of attribute \"Conventions\".\n");
- nc_close(ncid);
- return AVERROR_INVALIDDATA;
- }
-
- /* check whether file is SOFA file */
- text = av_malloc(att_len + 1);
- if (!text) {
- nc_close(ncid);
- return AVERROR(ENOMEM);
- }
+ struct MYSOFA_HRTF *mysofa;
+ int ret;
- nc_get_att_text(ncid, NC_GLOBAL, "Conventions", text);
- *(text + att_len) = 0;
- if (strncmp("SOFA", text, 4)) {
- av_log(ctx, AV_LOG_ERROR, "Not a SOFA file!\n");
- av_freep(&text);
- nc_close(ncid);
+ mysofa = mysofa_load(filename, &ret);
+ if (ret || !mysofa) {
+ av_log(ctx, AV_LOG_ERROR, "Can't find SOFA-file '%s'\n", filename);
return AVERROR(EINVAL);
}
- av_freep(&text);
-
- status = nc_inq_attlen(ncid, NC_GLOBAL, "License", &att_len);
- if (status == NC_NOERR) {
- text = av_malloc(att_len + 1);
- if (text) {
- nc_get_att_text(ncid, NC_GLOBAL, "License", text);
- *(text + att_len) = 0;
- av_log(ctx, AV_LOG_INFO, "SOFA file License: %s\n", text);
- av_freep(&text);
- }
- }
-
- status = nc_inq_attlen(ncid, NC_GLOBAL, "SourceDescription", &att_len);
- if (status == NC_NOERR) {
- text = av_malloc(att_len + 1);
- if (text) {
- nc_get_att_text(ncid, NC_GLOBAL, "SourceDescription", text);
- *(text + att_len) = 0;
- av_log(ctx, AV_LOG_INFO, "SOFA file SourceDescription: %s\n", text);
- av_freep(&text);
- }
- }
-
- status = nc_inq_attlen(ncid, NC_GLOBAL, "Comment", &att_len);
- if (status == NC_NOERR) {
- text = av_malloc(att_len + 1);
- if (text) {
- nc_get_att_text(ncid, NC_GLOBAL, "Comment", text);
- *(text + att_len) = 0;
- av_log(ctx, AV_LOG_INFO, "SOFA file Comment: %s\n", text);
- av_freep(&text);
- }
- }
-
- status = nc_inq_attlen(ncid, NC_GLOBAL, "SOFAConventions", &att_len);
- if (status != NC_NOERR) {
- av_log(ctx, AV_LOG_ERROR, "Can't get length of attribute \"SOFAConventions\".\n");
- nc_close(ncid);
- return AVERROR_INVALIDDATA;
- }
- sofa_conventions = av_malloc(att_len + 1);
- if (!sofa_conventions) {
- nc_close(ncid);
- return AVERROR(ENOMEM);
- }
-
- nc_get_att_text(ncid, NC_GLOBAL, "SOFAConventions", sofa_conventions);
- *(sofa_conventions + att_len) = 0;
- if (strncmp("SimpleFreeFieldHRIR", sofa_conventions, att_len)) {
- av_log(ctx, AV_LOG_ERROR, "Not a SimpleFreeFieldHRIR file!\n");
- av_freep(&sofa_conventions);
- nc_close(ncid);
+ if (mysofa->DataSamplingRate.elements != 1)
return AVERROR(EINVAL);
- }
- av_freep(&sofa_conventions);
-
- /* -- get sampling rate of HRTFs -- */
- /* read ID, then value */
- status = nc_inq_varid(ncid, "Data.SamplingRate", &samplingrate_id);
- status += nc_get_var_uint(ncid, samplingrate_id, &sample_rate);
- if (status != NC_NOERR) {
- av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.SamplingRate.\n");
- nc_close(ncid);
- return AVERROR(EINVAL);
- }
- *samplingrate = sample_rate; /* remember sampling rate */
-
- /* -- allocate memory for one value for each measurement position: -- */
- sp_a = s->sofa.sp_a = av_malloc_array(m_dim, sizeof(float));
- sp_e = s->sofa.sp_e = av_malloc_array(m_dim, sizeof(float));
- sp_r = s->sofa.sp_r = av_malloc_array(m_dim, sizeof(float));
- /* delay and IR values required for each ear and measurement position: */
- data_delay = s->sofa.data_delay = av_calloc(m_dim, 2 * sizeof(int));
- data_ir = s->sofa.data_ir = av_calloc(m_dim * FFALIGN(n_samples, 16), sizeof(float) * 2);
-
- if (!data_delay || !sp_a || !sp_e || !sp_r || !data_ir) {
- /* if memory could not be allocated */
- close_sofa(&s->sofa);
- return AVERROR(ENOMEM);
- }
-
- /* get impulse responses (HRTFs): */
- /* get corresponding ID */
- status = nc_inq_varid(ncid, "Data.IR", &data_ir_id);
- status += nc_get_var_float(ncid, data_ir_id, data_ir); /* read and store IRs */
- if (status != NC_NOERR) {
- av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.IR!\n");
- ret = AVERROR(EINVAL);
- goto error;
- }
-
- /* get source positions of the HRTFs in the SOFA file: */
- status = nc_inq_varid(ncid, "SourcePosition", &sp_id); /* get corresponding ID */
- status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 0 } ,
- (size_t[2]){ m_dim, 1}, sp_a); /* read & store azimuth angles */
- status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 1 } ,
- (size_t[2]){ m_dim, 1}, sp_e); /* read & store elevation angles */
- status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 2 } ,
- (size_t[2]){ m_dim, 1}, sp_r); /* read & store radii */
- if (status != NC_NOERR) { /* if any source position variable coudn't be read */
- av_log(ctx, AV_LOG_ERROR, "Couldn't read SourcePosition.\n");
- ret = AVERROR(EINVAL);
- goto error;
- }
-
- /* read Data.Delay, check for errors and fit it to data_delay */
- status = nc_inq_varid(ncid, "Data.Delay", &data_delay_id);
- status += nc_inq_vardimid(ncid, data_delay_id, &data_delay_dim_id[0]);
- status += nc_inq_dimname(ncid, data_delay_dim_id[0], data_delay_dim_name);
- if (status != NC_NOERR) {
- av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay.\n");
- ret = AVERROR(EINVAL);
- goto error;
- }
-
- /* Data.Delay dimension check */
- /* dimension of Data.Delay is [I R]: */
- if (!strncmp(data_delay_dim_name, "I", 2)) {
- /* check 2 characters to assure string is 0-terminated after "I" */
- int delay[2]; /* delays get from SOFA file: */
- int *data_delay_r;
-
- av_log(ctx, AV_LOG_DEBUG, "Data.Delay has dimension [I R]\n");
- status = nc_get_var_int(ncid, data_delay_id, &delay[0]);
- if (status != NC_NOERR) {
- av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay\n");
- ret = AVERROR(EINVAL);
- goto error;
- }
- data_delay_r = data_delay + m_dim;
- for (i = 0; i < m_dim; i++) { /* extend given dimension [I R] to [M R] */
- /* assign constant delay value for all measurements to data_delay fields */
- data_delay[i] = delay[0];
- data_delay_r[i] = delay[1];
- }
- /* dimension of Data.Delay is [M R] */
- } else if (!strncmp(data_delay_dim_name, "M", 2)) {
- av_log(ctx, AV_LOG_ERROR, "Data.Delay in dimension [M R]\n");
- /* get delays from SOFA file: */
- status = nc_get_var_int(ncid, data_delay_id, data_delay);
- if (status != NC_NOERR) {
- av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay\n");
- ret = AVERROR(EINVAL);
- goto error;
- }
- } else { /* dimension of Data.Delay is neither [I R] nor [M R] */
- av_log(ctx, AV_LOG_ERROR, "Data.Delay does not have the required dimensions [I R] or [M R].\n");
- ret = AVERROR(EINVAL);
- goto error;
- }
-
- /* save information in SOFA struct: */
- s->sofa.m_dim = m_dim; /* no. measurement positions */
- s->sofa.n_samples = n_samples; /* length on one IR */
- s->sofa.ncid = ncid; /* netCDF ID of SOFA file */
- nc_close(ncid); /* close SOFA file */
-
- av_log(ctx, AV_LOG_DEBUG, "m_dim: %d n_samples %d\n", m_dim, n_samples);
+ *samplingrate = mysofa->DataSamplingRate.values[0];
+ s->sofa.n_samples = mysofa->N;
+ mysofa_free(mysofa);
return 0;
-
-error:
- close_sofa(&s->sofa);
- return ret;
}
static int parse_channel_name(char **arg, int *rchannel, char *buf)
@@ -507,83 +263,6 @@ static int get_speaker_pos(AVFilterContext *ctx,
}
-static int max_delay(struct NCSofa *sofa)
-{
- int i, max = 0;
-
- for (i = 0; i < sofa->m_dim * 2; i++) {
- /* search maximum delay in given SOFA file */
- max = FFMAX(max, sofa->data_delay[i]);
- }
-
- return max;
-}
-
-static int find_m(SOFAlizerContext *s, int azim, int elev, float radius)
-{
- /* get source positions and M of currently selected SOFA file */
- float *sp_a = s->sofa.sp_a; /* azimuth angle */
- float *sp_e = s->sofa.sp_e; /* elevation angle */
- float *sp_r = s->sofa.sp_r; /* radius */
- int m_dim = s->sofa.m_dim; /* no. measurements */
- int best_id = 0; /* index m currently closest to desired source pos. */
- float delta = 1000; /* offset between desired and currently best pos. */
- float current;
- int i;
-
- for (i = 0; i < m_dim; i++) {
- /* search through all measurements in currently selected SOFA file */
- /* distance of current to desired source position: */
- current = fabs(sp_a[i] - azim) +
- fabs(sp_e[i] - elev) +
- fabs(sp_r[i] - radius);
- if (current <= delta) {
- /* if current distance is smaller than smallest distance so far */
- delta = current;
- best_id = i; /* remember index */
- }
- }
-
- return best_id;
-}
-
-static int compensate_volume(AVFilterContext *ctx)
-{
- struct SOFAlizerContext *s = ctx->priv;
- float compensate;
- float energy = 0;
- float *ir;
- int m;
-
- if (s->sofa.ncid) {
- /* find IR at front center position in the SOFA file (IR closest to 0°,0°,1m) */
- struct NCSofa *sofa = &s->sofa;
- m = find_m(s, 0, 0, 1);
- /* get energy of that IR and compensate volume */
- ir = sofa->data_ir + 2 * m * sofa->n_samples;
- if (sofa->n_samples & 31) {
- energy = avpriv_scalarproduct_float_c(ir, ir, sofa->n_samples);
- } else {
- energy = s->fdsp->scalarproduct_float(ir, ir, sofa->n_samples);
- }
- compensate = 256 / (sofa->n_samples * sqrt(energy));
- av_log(ctx, AV_LOG_DEBUG, "Compensate-factor: %f\n", compensate);
- ir = sofa->data_ir;
- /* apply volume compensation to IRs */
- if (sofa->n_samples & 31) {
- int i;
- for (i = 0; i < sofa->n_samples * sofa->m_dim * 2; i++) {
- ir[i] = ir[i] * compensate;
- }
- } else {
- s->fdsp->vector_fmul_scalar(ir, ir, compensate, sofa->n_samples * sofa->m_dim * 2);
- emms_c();
- }
- }
-
- return 0;
-}
-
typedef struct ThreadData {
AVFrame *in, *out;
int *write;
@@ -629,10 +308,10 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n
for (i = 0; i < in->nb_samples; i++) {
const float *temp_ir = ir; /* using same set of IRs for each sample */
- *dst = 0;
+ dst[0] = 0;
for (l = 0; l < in_channels; l++) {
/* write current input sample to ringbuffer (for each channel) */
- *(buffer[l] + wr) = src[l];
+ buffer[l][wr] = src[l];
}
/* loop goes through all channels to be convolved */
@@ -643,31 +322,31 @@ static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int n
/* LFE is an input channel but requires no convolution */
/* apply gain to LFE signal and add to output buffer */
*dst += *(buffer[s->lfe_channel] + wr) * s->gain_lfe;
- temp_ir += FFALIGN(n_samples, 16);
+ temp_ir += FFALIGN(n_samples, 32);
continue;
}
/* current read position in ringbuffer: input sample write position
* - delay for l-th ch. + diff. betw. IR length and buffer length
* (mod buffer length) */
- read = (wr - *(delay + l) - (n_samples - 1) + buffer_length) & modulo;
+ read = (wr - delay[l] - (n_samples - 1) + buffer_length) & modulo;
if (read + n_samples < buffer_length) {
- memcpy(temp_src, bptr + read, n_samples * sizeof(*temp_src));
+ memmove(temp_src, bptr + read, n_samples * sizeof(*temp_src));
} else {
int len = FFMIN(n_samples - (read % n_samples), buffer_length - read);
- memcpy(temp_src, bptr + read, len * sizeof(*temp_src));
- memcpy(temp_src + len, bptr, (n_samples - len) * sizeof(*temp_src));
+ memmove(temp_src, bptr + read, len * sizeof(*temp_src));
+ memmove(temp_src + len, bptr, (n_samples - len) * sizeof(*temp_src));
}
/* multiply signal and IR, and add up the results */
dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, n_samples);
- temp_ir += FFALIGN(n_samples, 16);
+ temp_ir += FFALIGN(n_samples, 32);
}
/* clippings counter */
- if (fabs(*dst) > 1)
+ if (fabs(dst[0]) > 1)
*n_clippings += 1;
/* move output buffer pointer by +2 to get to next sample of processed channel: */
@@ -875,14 +554,14 @@ static int query_formats(AVFilterContext *ctx)
return ff_set_common_samplerates(ctx, formats);
}
-static int load_data(AVFilterContext *ctx, int azim, int elev, float radius)
+static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int sample_rate)
{
struct SOFAlizerContext *s = ctx->priv;
- const int n_samples = s->sofa.n_samples;
+ int n_samples;
int n_conv = s->n_conv; /* no. channels to convolve */
- int n_fft = s->n_fft;
- int delay_l[16]; /* broadband delay for each IR */
- int delay_r[16];
+ int n_fft;
+ float delay_l; /* broadband delay for each IR */
+ float delay_r;
int nb_input_channels = ctx->inputs[0]->channels; /* no. input channels */
float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10); /* gain - 3dB/channel */
FFTComplex *data_hrtf_l = NULL;
@@ -892,68 +571,166 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius)
float *data_ir_l = NULL;
float *data_ir_r = NULL;
int offset = 0; /* used for faster pointer arithmetics in for-loop */
- int m[16]; /* measurement index m of IR closest to required source positions */
int i, j, azim_orig = azim, elev_orig = elev;
+ int filter_length, ret = 0;
+ int n_current;
+ int n_max = 0;
- if (!s->sofa.ncid) { /* if an invalid SOFA file has been selected */
+ s->sofa.easy = mysofa_open(s->filename, sample_rate, &filter_length, &ret);
+ if (!s->sofa.easy || ret) { /* if an invalid SOFA file has been selected */
av_log(ctx, AV_LOG_ERROR, "Selected SOFA file is invalid. Please select valid SOFA file.\n");
return AVERROR_INVALIDDATA;
}
+ n_samples = s->sofa.n_samples;
+
+ s->data_ir[0] = av_calloc(FFALIGN(n_samples, 32), sizeof(float) * s->n_conv);
+ s->data_ir[1] = av_calloc(FFALIGN(n_samples, 32), sizeof(float) * s->n_conv);
+ s->delay[0] = av_calloc(s->n_conv, sizeof(int));
+ s->delay[1] = av_calloc(s->n_conv, sizeof(int));
+
+ if (!s->data_ir[0] || !s->data_ir[1] || !s->delay[0] || !s->delay[1]) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ /* get temporary IR for L and R channel */
+ data_ir_l = av_calloc(n_conv * FFALIGN(n_samples, 32), sizeof(*data_ir_l));
+ data_ir_r = av_calloc(n_conv * FFALIGN(n_samples, 32), sizeof(*data_ir_r));
+ if (!data_ir_r || !data_ir_l) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+
if (s->type == TIME_DOMAIN) {
- s->temp_src[0] = av_calloc(FFALIGN(n_samples, 16), sizeof(float));
- s->temp_src[1] = av_calloc(FFALIGN(n_samples, 16), sizeof(float));
-
- /* get temporary IR for L and R channel */
- data_ir_l = av_calloc(n_conv * FFALIGN(n_samples, 16), sizeof(*data_ir_l));
- data_ir_r = av_calloc(n_conv * FFALIGN(n_samples, 16), sizeof(*data_ir_r));
- if (!data_ir_r || !data_ir_l || !s->temp_src[0] || !s->temp_src[1]) {
- av_free(data_ir_l);
- av_free(data_ir_r);
- return AVERROR(ENOMEM);
+ s->temp_src[0] = av_calloc(FFALIGN(n_samples, 32), sizeof(float));
+ s->temp_src[1] = av_calloc(FFALIGN(n_samples, 32), sizeof(float));
+ if (!s->temp_src[0] || !s->temp_src[1]) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+ }
+
+ s->speaker_azim = av_calloc(s->n_conv, sizeof(*s->speaker_azim));
+ s->speaker_elev = av_calloc(s->n_conv, sizeof(*s->speaker_elev));
+ if (!s->speaker_azim || !s->speaker_elev) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ /* get speaker positions */
+ if ((ret = get_speaker_pos(ctx, s->speaker_azim, s->speaker_elev)) < 0) {
+ av_log(ctx, AV_LOG_ERROR, "Couldn't get speaker positions. Input channel configuration not supported.\n");
+ goto fail;
+ }
+
+ for (i = 0; i < s->n_conv; i++) {
+ float coordinates[3];
+
+ /* load and store IRs and corresponding delays */
+ azim = (int)(s->speaker_azim[i] + azim_orig) % 360;
+ elev = (int)(s->speaker_elev[i] + elev_orig) % 90;
+
+ coordinates[0] = azim;
+ coordinates[1] = elev;
+ coordinates[2] = radius;
+
+ mysofa_s2c(coordinates);
+
+ /* get id of IR closest to desired position */
+ mysofa_getfilter_float(s->sofa.easy, coordinates[0], coordinates[1], coordinates[2],
+ data_ir_l + FFALIGN(n_samples, 32) * i,
+ data_ir_r + FFALIGN(n_samples, 32) * i,
+ &delay_l, &delay_r);
+
+ s->delay[0][i] = delay_l * sample_rate;
+ s->delay[1][i] = delay_r * sample_rate;
+
+ s->sofa.max_delay = FFMAX3(s->sofa.max_delay, s->delay[0][i], s->delay[1][i]);
+ }
+
+ /* get size of ringbuffer (longest IR plus max. delay) */
+ /* then choose next power of 2 for performance optimization */
+ n_current = s->sofa.n_samples + s->sofa.max_delay;
+ /* length of longest IR plus max. delay */
+ n_max = FFMAX(n_max, n_current);
+
+ /* buffer length is longest IR plus max. delay -> next power of 2
+ (32 - count leading zeros gives required exponent) */
+ s->buffer_length = 1 << (32 - ff_clz(n_max));
+ s->n_fft = n_fft = 1 << (32 - ff_clz(n_max + sample_rate));
+
+ if (s->type == FREQUENCY_DOMAIN) {
+ av_fft_end(s->fft[0]);
+ av_fft_end(s->fft[1]);
+ s->fft[0] = av_fft_init(log2(s->n_fft), 0);
+ s->fft[1] = av_fft_init(log2(s->n_fft), 0);
+ av_fft_end(s->ifft[0]);
+ av_fft_end(s->ifft[1]);
+ s->ifft[0] = av_fft_init(log2(s->n_fft), 1);
+ s->ifft[1] = av_fft_init(log2(s->n_fft), 1);
+
+ if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) {
+ av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts of size %d.\n", s->n_fft);
+ ret = AVERROR(ENOMEM);
+ goto fail;
}
+ }
+
+ if (s->type == TIME_DOMAIN) {
+ s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
+ s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
} else {
/* get temporary HRTF memory for L and R channel */
data_hrtf_l = av_malloc_array(n_fft, sizeof(*data_hrtf_l) * n_conv);
data_hrtf_r = av_malloc_array(n_fft, sizeof(*data_hrtf_r) * n_conv);
if (!data_hrtf_r || !data_hrtf_l) {
- av_free(data_hrtf_l);
- av_free(data_hrtf_r);
- return AVERROR(ENOMEM);
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float));
+ s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float));
+ s->temp_fft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
+ s->temp_fft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
+ if (!s->temp_fft[0] || !s->temp_fft[1]) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+ }
+
+ if (!s->ringbuffer[0] || !s->ringbuffer[1]) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
+ }
+
+ if (s->type == FREQUENCY_DOMAIN) {
+ fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l));
+ fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r));
+ if (!fft_in_l || !fft_in_r) {
+ ret = AVERROR(ENOMEM);
+ goto fail;
}
}
for (i = 0; i < s->n_conv; i++) {
- /* load and store IRs and corresponding delays */
- azim = (int)(s->speaker_azim[i] + azim_orig) % 360;
- elev = (int)(s->speaker_elev[i] + elev_orig) % 90;
- /* get id of IR closest to desired position */
- m[i] = find_m(s, azim, elev, radius);
+ float *lir, *rir;
- /* load the delays associated with the current IRs */
- delay_l[i] = *(s->sofa.data_delay + 2 * m[i]);
- delay_r[i] = *(s->sofa.data_delay + 2 * m[i] + 1);
+ offset = i * FFALIGN(n_samples, 32); /* no. samples already written */
+
+ lir = data_ir_l + offset;
+ rir = data_ir_r + offset;
if (s->type == TIME_DOMAIN) {
- offset = i * FFALIGN(n_samples, 16); /* no. samples already written */
for (j = 0; j < n_samples; j++) {
/* load reversed IRs of the specified source position
* sample-by-sample for left and right ear; and apply gain */
- *(data_ir_l + offset + j) = /* left channel */
- *(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j) * gain_lin;
- *(data_ir_r + offset + j) = /* right channel */
- *(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j + n_samples) * gain_lin;
+ s->data_ir[0][offset + j] = lir[n_samples - 1 - j] * gain_lin;
+ s->data_ir[1][offset + j] = rir[n_samples - 1 - j] * gain_lin;
}
} else {
- fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l));
- fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r));
- if (!fft_in_l || !fft_in_r) {
- av_free(data_hrtf_l);
- av_free(data_hrtf_r);
- av_free(fft_in_l);
- av_free(fft_in_r);
- return AVERROR(ENOMEM);
- }
+ memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l));
+ memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r));
offset = i * n_fft; /* no. samples already written */
for (j = 0; j < n_samples; j++) {
@@ -961,10 +738,8 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius)
* sample-by-sample and apply gain,
* L channel is loaded to real part, R channel to imag part,
* IRs ared shifted by L and R delay */
- fft_in_l[delay_l[i] + j].re = /* left channel */
- *(s->sofa.data_ir + 2 * m[i] * n_samples + j) * gain_lin;
- fft_in_r[delay_r[i] + j].re = /* right channel */
- *(s->sofa.data_ir + (2 * m[i] + 1) * n_samples + j) * gain_lin;
+ fft_in_l[s->delay[0][i] + j].re = lir[j] * gain_lin;
+ fft_in_r[s->delay[1][i] + j].re = rir[j] * gain_lin;
}
/* actually transform to frequency domain (IRs -> HRTFs) */
@@ -975,45 +750,33 @@ static int load_data(AVFilterContext *ctx, int azim, int elev, float radius)
av_fft_calc(s->fft[0], fft_in_r);
memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
}
-
- av_log(ctx, AV_LOG_DEBUG, "Index: %d, Azimuth: %f, Elevation: %f, Radius: %f of SOFA file.\n",
- m[i], *(s->sofa.sp_a + m[i]), *(s->sofa.sp_e + m[i]), *(s->sofa.sp_r + m[i]));
}
- if (s->type == TIME_DOMAIN) {
- /* copy IRs and delays to allocated memory in the SOFAlizerContext struct: */
- memcpy(s->data_ir[0], data_ir_l, sizeof(float) * n_conv * FFALIGN(n_samples, 16));
- memcpy(s->data_ir[1], data_ir_r, sizeof(float) * n_conv * FFALIGN(n_samples, 16));
-
- av_freep(&data_ir_l); /* free temporary IR memory */
- av_freep(&data_ir_r);
- } else {
+ if (s->type == FREQUENCY_DOMAIN) {
s->data_hrtf[0] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex));
s->data_hrtf[1] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex));
if (!s->data_hrtf[0] || !s->data_hrtf[1]) {
- av_freep(&data_hrtf_l);
- av_freep(&data_hrtf_r);
- av_freep(&fft_in_l);
- av_freep(&fft_in_r);
- return AVERROR(ENOMEM); /* memory allocation failed */
+ ret = AVERROR(ENOMEM);
+ goto fail;
}
memcpy(s->data_hrtf[0], data_hrtf_l, /* copy HRTF data to */
sizeof(FFTComplex) * n_conv * n_fft); /* filter struct */
memcpy(s->data_hrtf[1], data_hrtf_r,
sizeof(FFTComplex) * n_conv * n_fft);
+ }
- av_freep(&data_hrtf_l); /* free temporary HRTF memory */
- av_freep(&data_hrtf_r);
+fail:
+ av_freep(&data_hrtf_l); /* free temporary HRTF memory */
+ av_freep(&data_hrtf_r);
- av_freep(&fft_in_l); /* free temporary FFT memory */
- av_freep(&fft_in_r);
- }
+ av_freep(&data_ir_l); /* free temprary IR memory */
+ av_freep(&data_ir_r);
- memcpy(s->delay[0], &delay_l[0], sizeof(int) * s->n_conv);
- memcpy(s->delay[1], &delay_r[0], sizeof(int) * s->n_conv);
+ av_freep(&fft_in_l); /* free temporary FFT memory */
+ av_freep(&fft_in_r);
- return 0;
+ return ret;
}
static av_cold int init(AVFilterContext *ctx)
@@ -1026,12 +789,8 @@ static av_cold int init(AVFilterContext *ctx)
return AVERROR(EINVAL);
}
- /* load SOFA file, */
- /* initialize file IDs to 0 before attempting to load SOFA files,
- * this assures that in case of error, only the memory of already
- * loaded files is free'd */
- s->sofa.ncid = 0;
- ret = load_sofa(ctx, s->filename, &s->sample_rate);
+ /* preload SOFA file, */
+ ret = preload_sofa(ctx, s->filename, &s->sample_rate);
if (ret) {
/* file loading error */
av_log(ctx, AV_LOG_ERROR, "Error while loading SOFA file: '%s'\n", s->filename);
@@ -1055,10 +814,6 @@ static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
SOFAlizerContext *s = ctx->priv;
- int nb_input_channels = inlink->channels; /* no. input channels */
- int n_max_ir = 0;
- int n_current;
- int n_max = 0;
int ret;
if (s->type == FREQUENCY_DOMAIN) {
@@ -1070,85 +825,14 @@ static int config_input(AVFilterLink *inlink)
/* gain -3 dB per channel, -6 dB to get LFE on a similar level */
s->gain_lfe = expf((s->gain - 3 * inlink->channels - 6 + s->lfe_gain) / 20 * M_LN10);
- s->n_conv = nb_input_channels;
-
- /* get size of ringbuffer (longest IR plus max. delay) */
- /* then choose next power of 2 for performance optimization */
- n_current = s->sofa.n_samples + max_delay(&s->sofa);
- if (n_current > n_max) {
- /* length of longest IR plus max. delay (in all SOFA files) */
- n_max = n_current;
- /* length of longest IR (without delay, in all SOFA files) */
- n_max_ir = s->sofa.n_samples;
- }
- /* buffer length is longest IR plus max. delay -> next power of 2
- (32 - count leading zeros gives required exponent) */
- s->buffer_length = 1 << (32 - ff_clz(n_max));
- s->n_fft = 1 << (32 - ff_clz(n_max + inlink->sample_rate));
-
- if (s->type == FREQUENCY_DOMAIN) {
- av_fft_end(s->fft[0]);
- av_fft_end(s->fft[1]);
- s->fft[0] = av_fft_init(log2(s->n_fft), 0);
- s->fft[1] = av_fft_init(log2(s->n_fft), 0);
- av_fft_end(s->ifft[0]);
- av_fft_end(s->ifft[1]);
- s->ifft[0] = av_fft_init(log2(s->n_fft), 1);
- s->ifft[1] = av_fft_init(log2(s->n_fft), 1);
-
- if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) {
- av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts of size %d.\n", s->n_fft);
- return AVERROR(ENOMEM);
- }
- }
-
- /* Allocate memory for the impulse responses, delays and the ringbuffers */
- /* size: (longest IR) * (number of channels to convolute) */
- s->data_ir[0] = av_calloc(FFALIGN(n_max_ir, 16), sizeof(float) * s->n_conv);
- s->data_ir[1] = av_calloc(FFALIGN(n_max_ir, 16), sizeof(float) * s->n_conv);
- /* length: number of channels to convolute */
- s->delay[0] = av_malloc_array(s->n_conv, sizeof(float));
- s->delay[1] = av_malloc_array(s->n_conv, sizeof(float));
- /* length: (buffer length) * (number of input channels),
- * OR: buffer length (if frequency domain processing)
- * calloc zero-initializes the buffer */
-
- if (s->type == TIME_DOMAIN) {
- s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
- s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
- } else {
- s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float));
- s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float));
- s->temp_fft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
- s->temp_fft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
- if (!s->temp_fft[0] || !s->temp_fft[1])
- return AVERROR(ENOMEM);
- }
-
- /* length: number of channels to convolute */
- s->speaker_azim = av_calloc(s->n_conv, sizeof(*s->speaker_azim));
- s->speaker_elev = av_calloc(s->n_conv, sizeof(*s->speaker_elev));
-
- /* memory allocation failed: */
- if (!s->data_ir[0] || !s->data_ir[1] || !s->delay[1] ||
- !s->delay[0] || !s->ringbuffer[0] || !s->ringbuffer[1] ||
- !s->speaker_azim || !s->speaker_elev)
- return AVERROR(ENOMEM);
-
- compensate_volume(ctx);
-
- /* get speaker positions */
- if ((ret = get_speaker_pos(ctx, s->speaker_azim, s->speaker_elev)) < 0) {
- av_log(ctx, AV_LOG_ERROR, "Couldn't get speaker positions. Input channel configuration not supported.\n");
- return ret;
- }
+ s->n_conv = inlink->channels;
/* load IRs to data_ir[0] and data_ir[1] for required directions */
- if ((ret = load_data(ctx, s->rotation, s->elevation, s->radius)) < 0)
+ if ((ret = load_data(ctx, s->rotation, s->elevation, s->radius, inlink->sample_rate)) < 0)
return ret;
av_log(ctx, AV_LOG_DEBUG, "Samplerate: %d Channels to convolute: %d, Length of ringbuffer: %d x %d\n",
- inlink->sample_rate, s->n_conv, nb_input_channels, s->buffer_length);
+ inlink->sample_rate, s->n_conv, inlink->channels, s->buffer_length);
return 0;
}
@@ -1157,13 +841,7 @@ static av_cold void uninit(AVFilterContext *ctx)
{
SOFAlizerContext *s = ctx->priv;
- if (s->sofa.ncid) {
- av_freep(&s->sofa.sp_a);
- av_freep(&s->sofa.sp_e);
- av_freep(&s->sofa.sp_r);
- av_freep(&s->sofa.data_delay);
- av_freep(&s->sofa.data_ir);
- }
+ close_sofa(&s->sofa);
av_fft_end(s->ifft[0]);
av_fft_end(s->ifft[1]);
av_fft_end(s->fft[0]);
--
2.9.3
More information about the ffmpeg-devel
mailing list