[FFmpeg-devel] [PATCH v2] Add multiple padding method in dnn native

Guo, Yejun yejun.guo at intel.com
Wed May 15 09:21:25 EEST 2019



> -----Original Message-----
> From: ffmpeg-devel [mailto:ffmpeg-devel-bounces at ffmpeg.org] On Behalf Of
> Steven Liu
> Sent: Wednesday, May 15, 2019 10:38 AM
> To: FFmpeg development discussions and patches <ffmpeg-devel at ffmpeg.org>
> Cc: Xuewei Meng <xwmeng96 at gmail.com>
> Subject: Re: [FFmpeg-devel] [PATCH v2] Add multiple padding method in dnn
> native
> 
> Xuewei Meng <xwmeng96 at gmail.com> 于2019年5月11日周六 上午11:11
> 写道:
> >
> > ---
> >  libavfilter/dnn_backend_native.c | 52 ++++++++++++++++++++++++--------
> >  libavfilter/dnn_backend_native.h |  3 ++
> >  2 files changed, 43 insertions(+), 12 deletions(-)

@xuewei, we still need to mention the impact of sr filter, and explain why same_clamp_to_edge is needed.

> >
> > diff --git a/libavfilter/dnn_backend_native.c
> b/libavfilter/dnn_backend_native.c
> > index 06fbdf368b..171a756385 100644
> > --- a/libavfilter/dnn_backend_native.c
> > +++ b/libavfilter/dnn_backend_native.c
> > @@ -61,6 +61,12 @@ static DNNReturnType set_input_output_native(void
> *model, DNNInputData *input, c
> >                  return DNN_ERROR;
> >              }
> >              cur_channels = conv_params->output_num;
> > +
> > +            if(conv_params->padding_method == VALID){
> > +                int pad_size = conv_params->kernel_size - 1;
> > +                cur_height -= pad_size;
> > +                cur_width -= pad_size;
> > +            }
> >              break;
> >          case DEPTH_TO_SPACE:
> >              depth_to_space_params = (DepthToSpaceParams
> *)network->layers[layer].params;
> > @@ -77,6 +83,10 @@ static DNNReturnType set_input_output_native(void
> *model, DNNInputData *input, c
> >          if (network->layers[layer].output){
> >              av_freep(&network->layers[layer].output);
> >          }
> > +
> > +        if(cur_height <= 0 || cur_width <= 0)
> > +            return DNN_ERROR;
> > +
> >          network->layers[layer].output = av_malloc(cur_height *
> cur_width * cur_channels * sizeof(float));
> >          if (!network->layers[layer].output){
> >              return DNN_ERROR;
> > @@ -154,13 +164,14 @@ DNNModel *ff_dnn_load_model_native(const
> char *model_filename)
> >                  ff_dnn_free_model_native(&model);
> >                  return NULL;
> >              }
> > +            conv_params->padding_method =
> (int32_t)avio_rl32(model_file_context);
> >              conv_params->activation =
> (int32_t)avio_rl32(model_file_context);
> >              conv_params->input_num =
> (int32_t)avio_rl32(model_file_context);
> >              conv_params->output_num =
> (int32_t)avio_rl32(model_file_context);
> >              conv_params->kernel_size =
> (int32_t)avio_rl32(model_file_context);
> >              kernel_size = conv_params->input_num *
> conv_params->output_num *
> >                            conv_params->kernel_size *
> conv_params->kernel_size;
> > -            dnn_size += 16 + (kernel_size + conv_params->output_num
> << 2);
> > +            dnn_size += 20 + (kernel_size + conv_params->output_num
> << 2);
> >              if (dnn_size > file_size || conv_params->input_num <= 0 ||
> >                  conv_params->output_num <= 0 ||
> conv_params->kernel_size <= 0){
> >                  avio_closep(&model_file_context);
> > @@ -218,23 +229,35 @@ DNNModel *ff_dnn_load_model_native(const
> char *model_filename)
> >
> >  static void convolve(const float *input, float *output, const
> ConvolutionalParams *conv_params, int width, int height)
> >  {
> > -    int y, x, n_filter, ch, kernel_y, kernel_x;
> >      int radius = conv_params->kernel_size >> 1;
> >      int src_linesize = width * conv_params->input_num;
> >      int filter_linesize = conv_params->kernel_size *
> conv_params->input_num;
> >      int filter_size = conv_params->kernel_size * filter_linesize;
> > +    int pad_size = (conv_params->padding_method == VALID) ?
> (conv_params->kernel_size - 1) / 2 : 0;
> >
> > -    for (y = 0; y < height; ++y){
> > -        for (x = 0; x < width; ++x){
> > -            for (n_filter = 0; n_filter < conv_params->output_num;
> ++n_filter){
> > +    for (int y = pad_size; y < height - pad_size; ++y){
> > +        for (int x = pad_size; x < width - pad_size; ++x){
> > +            for (int n_filter = 0; n_filter < conv_params->output_num;
> ++n_filter){
> >                  output[n_filter] = conv_params->biases[n_filter];
> > -                for (ch = 0; ch < conv_params->input_num; ++ch){
> > -                    for (kernel_y = 0; kernel_y <
> conv_params->kernel_size; ++kernel_y){
> > -                        for (kernel_x = 0; kernel_x <
> conv_params->kernel_size; ++kernel_x){
> > -                            output[n_filter] +=
> input[CLAMP_TO_EDGE(y + kernel_y - radius, height) * src_linesize +
> > -
> CLAMP_TO_EDGE(x + kernel_x - radius, width) * conv_params->input_num + ch]
> *
> > -
> conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
> > -
> kernel_x * conv_params->input_num + ch];
> > +
> > +                for (int ch = 0; ch < conv_params->input_num; ++ch){
> > +                    for (int kernel_y = 0; kernel_y <
> conv_params->kernel_size; ++kernel_y){
> > +                        for (int kernel_x = 0; kernel_x <
> conv_params->kernel_size; ++kernel_x){
> > +                            float input_pel;
> > +                            if(conv_params->padding_method ==
> SAME_CLAMP_TO_EDGE){
> > +                                int y_pos = CLAMP_TO_EDGE(y +
> kernel_y - radius, height);
> > +                                int x_pos = CLAMP_TO_EDGE(x +
> kernel_x - radius, width);
> > +                                input_pel = input[y_pos *
> src_linesize + x_pos * conv_params->input_num + ch];
> > +                            }else{
> > +                                int y_pos = y + kernel_y - radius;
> > +                                int x_pos = x + kernel_x - radius;
> > +                                input_pel = (x_pos < 0 || x_pos >=
> width || y_pos < 0 || y_pos >= height) ? 0.0 :
> > +                                                   input[y_pos
> * src_linesize + x_pos * conv_params->input_num + ch];
> > +                            }
> > +
> > +
> > +                            output[n_filter] += input_pel *
> conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
> > +
> kernel_x * conv_params->input_num + ch];
> >                          }
> >                      }
> >                  }
> > @@ -305,6 +328,11 @@ DNNReturnType
> ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
> >              conv_params = (ConvolutionalParams
> *)network->layers[layer].params;
> >              convolve(network->layers[layer - 1].output,
> network->layers[layer].output, conv_params, cur_width, cur_height);
> >              cur_channels = conv_params->output_num;
> > +            if(conv_params->padding_method == VALID){
> > +                int pad_size = conv_params->kernel_size - 1;
> > +                cur_height -= pad_size;
> > +                cur_width -= pad_size;
> > +            }
> >              break;
> >          case DEPTH_TO_SPACE:
> >              depth_to_space_params = (DepthToSpaceParams
> *)network->layers[layer].params;
> > diff --git a/libavfilter/dnn_backend_native.h
> b/libavfilter/dnn_backend_native.h
> > index e13a68a168..d70cd16387 100644
> > --- a/libavfilter/dnn_backend_native.h
> > +++ b/libavfilter/dnn_backend_native.h
> > @@ -34,6 +34,8 @@ typedef enum {INPUT, CONV, DEPTH_TO_SPACE}
> DNNLayerType;
> >
> >  typedef enum {RELU, TANH, SIGMOID} DNNActivationFunc;
> >
> > +typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE}
> DNNConvPaddingParam;
> > +
> >  typedef struct Layer{
> >      DNNLayerType type;
> >      float *output;
> > @@ -43,6 +45,7 @@ typedef struct Layer{
> >  typedef struct ConvolutionalParams{
> >      int32_t input_num, output_num, kernel_size;
> >      DNNActivationFunc activation;
> > +    DNNConvPaddingParam padding_method;
> >      float *kernel;
> >      float *biases;
> >  } ConvolutionalParams;
> > --
> > 2.17.1
> >
> > _______________________________________________
> > ffmpeg-devel mailing list
> > ffmpeg-devel at ffmpeg.org
> > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
> >
> > To unsubscribe, visit link above, or email
> > ffmpeg-devel-request at ffmpeg.org with subject "unsubscribe".
> 
> 
> The https://github.com/HighVoltageRocknRoll/sr has  loss of
> communication,and the project
> https://github.com/HighVoltageRocknRoll/sr has no maintainer now, so i
> think the pull request cannot be merge.
> 1. So i recommend Xuewei fork the project to his github, and merge the
> pr to his fork project, and modify the sr document of
> libavfilter/vf_sr.c. makes GSoC derain mentor project continue.

I prefer this one.

> 
> 2. If 1st way cannot be acceptable, Xuewei should duplicate DNN code
> for the derain.
> 
> Comments welcome.
> 
> Thanks
> 
> Steven
> _______________________________________________
> ffmpeg-devel mailing list
> ffmpeg-devel at ffmpeg.org
> https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
> 
> To unsubscribe, visit link above, or email
> ffmpeg-devel-request at ffmpeg.org with subject "unsubscribe".


More information about the ffmpeg-devel mailing list