[FFmpeg-devel] [PATCH] avfilter/vf_nlmeans: add >8 bit support
mypopy at gmail.com
mypopy at gmail.com
Wed Nov 20 14:12:28 EET 2019
On Wed, Nov 20, 2019 at 5:55 PM Paul B Mahol <onemda at gmail.com> wrote:
>
> Signed-off-by: Paul B Mahol <onemda at gmail.com>
> ---
> libavfilter/aarch64/vf_nlmeans_init.c | 6 +-
> libavfilter/nlmeans_template.c | 370 ++++++++++++++++++
> libavfilter/vf_nlmeans.c | 539 ++++++--------------------
> libavfilter/vf_nlmeans.h | 59 ++-
> 4 files changed, 548 insertions(+), 426 deletions(-)
> create mode 100644 libavfilter/nlmeans_template.c
>
> diff --git a/libavfilter/aarch64/vf_nlmeans_init.c b/libavfilter/aarch64/vf_nlmeans_init.c
> index a1edefb144..6ee157dfe0 100644
> --- a/libavfilter/aarch64/vf_nlmeans_init.c
> +++ b/libavfilter/aarch64/vf_nlmeans_init.c
> @@ -24,10 +24,10 @@ void ff_compute_safe_ssd_integral_image_neon(uint32_t *dst, ptrdiff_t dst_linesi
> const uint8_t *s2, ptrdiff_t linesize2,
> int w, int h);
>
> -av_cold void ff_nlmeans_init_aarch64(NLMeansDSPContext *dsp)
> +av_cold void ff_nlmeans_init_aarch64(NLMeansDSPContext *dsp, int depth)
> {
> int cpu_flags = av_get_cpu_flags();
>
> - if (have_neon(cpu_flags))
> - dsp->compute_safe_ssd_integral_image = ff_compute_safe_ssd_integral_image_neon;
> + if (have_neon(cpu_flags) && depth == 8)
> + dsp->compute_safe_ssd_integral_image32 = ff_compute_safe_ssd_integral_image_neon;
> }
> diff --git a/libavfilter/nlmeans_template.c b/libavfilter/nlmeans_template.c
> new file mode 100644
> index 0000000000..b0d7f7482d
> --- /dev/null
> +++ b/libavfilter/nlmeans_template.c
> @@ -0,0 +1,370 @@
> +/*
> + * Copyright (c) 2016 Clément Bœsch <u pkh me>
> + *
> + * This file is part of FFmpeg.
> + *
> + * FFmpeg is free software; you can redistribute it and/or
> + * modify it under the terms of the GNU Lesser General Public
> + * License as published by the Free Software Foundation; either
> + * version 2.1 of the License, or (at your option) any later version.
> + *
> + * FFmpeg is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
> + * Lesser General Public License for more details.
> + *
> + * You should have received a copy of the GNU Lesser General Public
> + * License along with FFmpeg; if not, write to the Free Software
> + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
> + */
> +
> +#include "libavutil/avassert.h"
> +#include "avfilter.h"
> +#include "formats.h"
> +#include "internal.h"
> +#include "vf_nlmeans.h"
> +#include "video.h"
> +
> +#undef pixel
> +#undef integral
> +#undef INTEGRAL_DEPTH
> +#if DEPTH <= 8
> +#define INTEGRAL_DEPTH 32
> +#define pixel uint8_t
> +#define integral uint32_t
> +#else
> +#define INTEGRAL_DEPTH 64
> +#define pixel uint16_t
> +#define integral uint64_t
> +#endif
> +
> +#define fn3(a,b) a##b
> +#define fn2(a,b) fn3(a,b)
> +#define fn(a) fn2(a, DEPTH)
> +#define ii(a) fn2(a, INTEGRAL_DEPTH)
> +
> +/**
> + * Compute squared difference of the safe area (the zone where s1 and s2
> + * overlap). It is likely the largest integral zone, so it is interesting to do
> + * as little checks as possible; contrary to the unsafe version of this
> + * function, we do not need any clipping here.
> + *
> + * The line above dst and the column to its left are always readable.
> + */
> +static void fn(compute_safe_ssd_integral_image_c)(integral *dst, ptrdiff_t dst_linesize_32,
> + const uint8_t *ss1, ptrdiff_t linesize1,
> + const uint8_t *ss2, ptrdiff_t linesize2,
> + int w, int h)
> +{
> + const pixel *s1 = (const pixel *)ss1;
> + const pixel *s2 = (const pixel *)ss2;
> + int x, y;
> + const integral *dst_top = dst - dst_linesize_32;
> +
> + linesize1 /= sizeof(pixel);
> + linesize2 /= sizeof(pixel);
> +
> + /* SIMD-friendly assumptions allowed here */
> + av_assert2(!(w & 0xf) && w >= 16 && h >= 1);
> +
> + for (y = 0; y < h; y++) {
> + for (x = 0; x < w; x += 4) {
> + const int d0 = s1[x ] - s2[x ];
> + const int d1 = s1[x + 1] - s2[x + 1];
> + const int d2 = s1[x + 2] - s2[x + 2];
> + const int d3 = s1[x + 3] - s2[x + 3];
> +
> + dst[x ] = dst_top[x ] - dst_top[x - 1] + d0*d0;
> + dst[x + 1] = dst_top[x + 1] - dst_top[x ] + d1*d1;
> + dst[x + 2] = dst_top[x + 2] - dst_top[x + 1] + d2*d2;
> + dst[x + 3] = dst_top[x + 3] - dst_top[x + 2] + d3*d3;
> +
> + dst[x ] += dst[x - 1];
> + dst[x + 1] += dst[x ];
> + dst[x + 2] += dst[x + 1];
> + dst[x + 3] += dst[x + 2];
> + }
> + s1 += linesize1;
> + s2 += linesize2;
> + dst += dst_linesize_32;
> + dst_top += dst_linesize_32;
> + }
> +}
> +
> +/**
> + * Compute squared difference of an unsafe area (the zone nor s1 nor s2 could
> + * be readable).
> + *
> + * On the other hand, the line above dst and the column to its left are always
> + * readable.
> + *
> + * There is little point in having this function SIMDified as it is likely too
> + * complex and only handle small portions of the image.
> + *
> + * @param dst integral image
> + * @param dst_linesize_32 integral image linesize (in 32-bit integers unit)
> + * @param startx integral starting x position
> + * @param starty integral starting y position
> + * @param ssrc source plane buffer
> + * @param linesize source plane linesize
> + * @param offx source offsetting in x
> + * @param offy source offsetting in y
> + * @paran r absolute maximum source offsetting
> + * @param sw source width
> + * @param sh source height
> + * @param w width to compute
> + * @param h height to compute
> + */
> +static inline void fn(compute_unsafe_ssd_integral_image)(integral *dst, ptrdiff_t dst_linesize_32,
> + int startx, int starty,
> + const uint8_t *ssrc, ptrdiff_t linesize,
> + int offx, int offy, int r, int sw, int sh,
> + int w, int h)
> +{
> + const pixel *src = (const pixel *)ssrc;
> + int x, y;
> +
> + linesize /= sizeof(pixel);
> +
> + for (y = starty; y < starty + h; y++) {
> + integral acc = dst[y*dst_linesize_32 + startx - 1] - dst[(y-1)*dst_linesize_32 + startx - 1];
> + const int s1y = av_clip(y - r, 0, sh - 1);
> + const int s2y = av_clip(y - (r + offy), 0, sh - 1);
> +
> + for (x = startx; x < startx + w; x++) {
> + const int s1x = av_clip(x - r, 0, sw - 1);
> + const int s2x = av_clip(x - (r + offx), 0, sw - 1);
> + const pixel v1 = src[s1y*linesize + s1x];
> + const pixel v2 = src[s2y*linesize + s2x];
> + const int d = v1 - v2;
> + acc += d * d;
> + dst[y*dst_linesize_32 + x] = dst[(y-1)*dst_linesize_32 + x] + acc;
> + }
> + }
> +}
> +
> +/*
> + * Compute the sum of squared difference integral image
> + * http://www.ipol.im/pub/art/2014/57/
> + * Integral Images for Block Matching - Gabriele Facciolo, Nicolas Limare, Enric Meinhardt-Llopis
> + *
> + * @param ii integral image of dimension (w+e*2) x (h+e*2) with
> + * an additional zeroed top line and column already
> + * "applied" to the pointer value
> + * @param ii_linesize_32 integral image linesize (in 32-bit integers unit)
> + * @param src source plane buffer
> + * @param linesize source plane linesize
> + * @param offx x-offsetting ranging in [-e;e]
> + * @param offy y-offsetting ranging in [-e;e]
> + * @param w source width
> + * @param h source height
> + * @param e research padding edge
> + */
> +static void fn(compute_ssd_integral_image)(const NLMeansDSPContext *dsp,
> + integral *ii, ptrdiff_t ii_linesize_32,
> + const uint8_t *src, ptrdiff_t linesize, int offx, int offy,
> + int e, int w, int h)
> +{
> + // ii has a surrounding padding of thickness "e"
> + const int ii_w = w + e*2;
> + const int ii_h = h + e*2;
> +
> + // we center the first source
> + const int s1x = e;
> + const int s1y = e;
> +
> + // 2nd source is the frame with offsetting
> + const int s2x = e + offx;
> + const int s2y = e + offy;
> +
> + // get the dimension of the overlapping rectangle where it is always safe
> + // to compare the 2 sources pixels
> + const int startx_safe = FFMAX(s1x, s2x);
> + const int starty_safe = FFMAX(s1y, s2y);
> + const int u_endx_safe = FFMIN(s1x + w, s2x + w); // unaligned
> + const int endy_safe = FFMIN(s1y + h, s2y + h);
> +
> + // deduce the safe area width and height
> + const int safe_pw = (u_endx_safe - startx_safe) & ~0xf;
> + const int safe_ph = endy_safe - starty_safe;
> +
> + // adjusted end x position of the safe area after width of the safe area gets aligned
> + const int endx_safe = startx_safe + safe_pw;
> +
> + // top part where only one of s1 and s2 is still readable, or none at all
> + fn(compute_unsafe_ssd_integral_image)(ii, ii_linesize_32,
> + 0, 0,
> + src, linesize,
> + offx, offy, e, w, h,
> + ii_w, starty_safe);
> +
> + // fill the left column integral required to compute the central
> + // overlapping one
> + fn(compute_unsafe_ssd_integral_image)(ii, ii_linesize_32,
> + 0, starty_safe,
> + src, linesize,
> + offx, offy, e, w, h,
> + startx_safe, safe_ph);
> +
> + // main and safe part of the integral
> + av_assert1(startx_safe - s1x >= 0); av_assert1(startx_safe - s1x < w);
> + av_assert1(starty_safe - s1y >= 0); av_assert1(starty_safe - s1y < h);
> + av_assert1(startx_safe - s2x >= 0); av_assert1(startx_safe - s2x < w);
> + av_assert1(starty_safe - s2y >= 0); av_assert1(starty_safe - s2y < h);
> + if (safe_pw && safe_ph)
> + ii(dsp->compute_safe_ssd_integral_image)(ii + starty_safe*ii_linesize_32 + startx_safe, ii_linesize_32,
> + src + (starty_safe - s1y) * linesize + (startx_safe - s1x) * sizeof(pixel), linesize,
> + src + (starty_safe - s2y) * linesize + (startx_safe - s2x) * sizeof(pixel), linesize,
> + safe_pw, safe_ph);
> +
> + // right part of the integral
> + fn(compute_unsafe_ssd_integral_image)(ii, ii_linesize_32,
> + endx_safe, starty_safe,
> + src, linesize,
> + offx, offy, e, w, h,
> + ii_w - endx_safe, safe_ph);
> +
> + // bottom part where only one of s1 and s2 is still readable, or none at all
> + fn(compute_unsafe_ssd_integral_image)(ii, ii_linesize_32,
> + 0, endy_safe,
> + src, linesize,
> + offx, offy, e, w, h,
> + ii_w, ii_h - endy_safe);
> +}
> +
> +static int fn(nlmeans_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
> +{
> + int x, y;
> + NLMeansContext *s = ctx->priv;
> + const struct thread_data *td = arg;
> + const ptrdiff_t src_linesize = td->src_linesize;
> + const int process_h = td->endy - td->starty;
> + const int slice_start = (process_h * jobnr ) / nb_jobs;
> + const int slice_end = (process_h * (jobnr+1)) / nb_jobs;
> + const int starty = td->starty + slice_start;
> + const int endy = td->starty + slice_end;
> + const int p = td->p;
> + const integral *ii = ii(td->ii_start) + (starty - p - 1) * s->ii_lz_32 - p - 1;
> + const int dist_b = 2*p + 1;
> + const int dist_d = dist_b * s->ii_lz_32;
> + const int dist_e = dist_d + dist_b;
> +
> + for (y = starty; y < endy; y++) {
> + const pixel *src = (const pixel *)(td->src + y*src_linesize);
> + struct weighted_avg *wa = s->wa + y*s->wa_linesize;
> + for (x = td->startx; x < td->endx; x++) {
> + /*
> + * M is a discrete map where every entry contains the sum of all the entries
> + * in the rectangle from the top-left origin of M to its coordinate. In the
> + * following schema, "i" contains the sum of the whole map:
> + *
> + * M = +----------+-----------------+----+
> + * | | | |
> + * | | | |
> + * | a| b| c|
> + * +----------+-----------------+----+
> + * | | | |
> + * | | | |
> + * | | X | |
> + * | | | |
> + * | d| e| f|
> + * +----------+-----------------+----+
> + * | | | |
> + * | g| h| i|
> + * +----------+-----------------+----+
> + *
> + * The sum of the X box can be calculated with:
> + * X = e-d-b+a
> + *
> + * See https://en.wikipedia.org/wiki/Summed_area_table
> + *
> + * The compute*_ssd functions compute the integral image M where every entry
> + * contains the sum of the squared difference of every corresponding pixels of
> + * two input planes of the same size as M.
> + */
> + const integral a = ii[x];
> + const integral b = ii[x + dist_b];
> + const integral d = ii[x + dist_d];
> + const integral e = ii[x + dist_e];
> + const integral patch_diff_sq = e + a - d - b;
> +
> + if (patch_diff_sq < s->max_meaningful_diff) {
> + const float weight = s->weight_lut[patch_diff_sq]; // exp(-patch_diff_sq * s->pdiff_scale)
> + wa[x].total_weight += weight;
> + wa[x].sum += weight * src[x];
> + }
> + }
> + ii += s->ii_lz_32;
> + }
> + return 0;
> +}
> +
> +static void fn(weight_averages)(uint8_t *ddst, ptrdiff_t dst_linesize,
> + const uint8_t *ssrc, ptrdiff_t src_linesize,
> + struct weighted_avg *wa, ptrdiff_t wa_linesize,
> + int w, int h)
> +{
> + const pixel *src = (const pixel *)ssrc;
> + pixel *dst = (pixel *)ddst;
> + int x, y;
> +
> + src_linesize /= sizeof(pixel);
> + dst_linesize /= sizeof(pixel);
> +
> + for (y = 0; y < h; y++) {
> + for (x = 0; x < w; x++) {
> + // Also weight the centered pixel
> + wa[x].total_weight += 1.f;
> + wa[x].sum += 1.f * src[x];
> + dst[x] = av_clip_uintp2(wa[x].sum / wa[x].total_weight + 0.5f, DEPTH);
> + }
> + dst += dst_linesize;
> + src += src_linesize;
> + wa += wa_linesize;
> + }
> +}
> +
> +static int fn(nlmeans_plane)(AVFilterContext *ctx, int w, int h, int p, int r,
> + uint8_t *dst, ptrdiff_t dst_linesize,
> + const uint8_t *src, ptrdiff_t src_linesize)
> +{
> + int offx, offy;
> + NLMeansContext *s = ctx->priv;
> + /* patches center points cover the whole research window so the patches
> + * themselves overflow the research window */
> + const int e = r + p;
> + /* focus an integral pointer on the centered image (s1) */
> + const uint32_t *centered_ii32 = s->ii32 + e*s->ii_lz_32 + e;
> + const uint64_t *centered_ii64 = s->ii64 + e*s->ii_lz_32 + e;
> +
> + memset(s->wa, 0, s->wa_linesize * h * sizeof(*s->wa));
> +
> + for (offy = -r; offy <= r; offy++) {
> + for (offx = -r; offx <= r; offx++) {
> + if (offx || offy) {
> + struct thread_data td = {
> + .src = src + offy*src_linesize + offx * (int)(sizeof(pixel)),
> + .src_linesize = src_linesize,
> + .startx = FFMAX(0, -offx),
> + .starty = FFMAX(0, -offy),
> + .endx = FFMIN(w, w - offx),
> + .endy = FFMIN(h, h - offy),
> + .ii_start32 = centered_ii32 + offy*s->ii_lz_32 + offx,
> + .ii_start64 = centered_ii64 + offy*s->ii_lz_32 + offx,
> + .p = p,
> + };
> +
> + fn(compute_ssd_integral_image)(&s->dsp, ii(s->ii), s->ii_lz_32,
> + src, src_linesize,
> + offx, offy, e, w, h);
> + ctx->internal->execute(ctx, fn(nlmeans_slice), &td, NULL,
> + FFMIN(td.endy - td.starty, ff_filter_get_nb_threads(ctx)));
> + }
> + }
> + }
> +
> + fn(weight_averages)(dst, dst_linesize, src, src_linesize,
> + s->wa, s->wa_linesize, w, h);
> +
> + return 0;
> +}
> diff --git a/libavfilter/vf_nlmeans.c b/libavfilter/vf_nlmeans.c
> index 06233b0dd4..bf7cf3aa0e 100644
> --- a/libavfilter/vf_nlmeans.c
> +++ b/libavfilter/vf_nlmeans.c
> @@ -38,31 +38,28 @@
> #include "vf_nlmeans.h"
> #include "video.h"
>
> -struct weighted_avg {
> - float total_weight;
> - float sum;
> -};
> +#define DEPTH 8
> +#include "nlmeans_template.c"
> +
> +#undef DEPTH
> +#define DEPTH 9
> +#include "nlmeans_template.c"
> +
> +#undef DEPTH
> +#define DEPTH 10
> +#include "nlmeans_template.c"
> +
> +#undef DEPTH
> +#define DEPTH 12
> +#include "nlmeans_template.c"
> +
> +#undef DEPTH
> +#define DEPTH 14
> +#include "nlmeans_template.c"
>
> -typedef struct NLMeansContext {
> - const AVClass *class;
> - int nb_planes;
> - int chroma_w, chroma_h;
> - double pdiff_scale; // invert of the filtering parameter (sigma*10) squared
> - double sigma; // denoising strength
> - int patch_size, patch_hsize; // patch size and half size
> - int patch_size_uv, patch_hsize_uv; // patch size and half size for chroma planes
> - int research_size, research_hsize; // research size and half size
> - int research_size_uv, research_hsize_uv; // research size and half size for chroma planes
> - uint32_t *ii_orig; // integral image
> - uint32_t *ii; // integral image starting after the 0-line and 0-column
> - int ii_w, ii_h; // width and height of the integral image
> - ptrdiff_t ii_lz_32; // linesize in 32-bit units of the integral image
> - struct weighted_avg *wa; // weighted average of every pixel
> - ptrdiff_t wa_linesize; // linesize for wa in struct size unit
> - float *weight_lut; // lookup table mapping (scaled) patch differences to their associated weights
> - uint32_t max_meaningful_diff; // maximum difference considered (if the patch difference is too high we ignore the pixel)
> - NLMeansDSPContext dsp;
> -} NLMeansContext;
> +#undef DEPTH
> +#define DEPTH 16
> +#include "nlmeans_template.c"
>
> #define OFFSET(x) offsetof(NLMeansContext, x)
> #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
> @@ -87,6 +84,13 @@ static int query_formats(AVFilterContext *ctx)
> AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
> AV_PIX_FMT_YUVJ411P,
> AV_PIX_FMT_GRAY8, AV_PIX_FMT_GBRP,
> + AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
> + AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
> + AV_PIX_FMT_YUV440P10,
> + AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
> + AV_PIX_FMT_YUV440P12,
> + AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
> + AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
> AV_PIX_FMT_NONE
> };
>
> @@ -96,380 +100,6 @@ static int query_formats(AVFilterContext *ctx)
> return ff_set_common_formats(ctx, fmts_list);
> }
>
> -/**
> - * Compute squared difference of the safe area (the zone where s1 and s2
> - * overlap). It is likely the largest integral zone, so it is interesting to do
> - * as little checks as possible; contrary to the unsafe version of this
> - * function, we do not need any clipping here.
> - *
> - * The line above dst and the column to its left are always readable.
> - */
> -static void compute_safe_ssd_integral_image_c(uint32_t *dst, ptrdiff_t dst_linesize_32,
> - const uint8_t *s1, ptrdiff_t linesize1,
> - const uint8_t *s2, ptrdiff_t linesize2,
> - int w, int h)
> -{
> - int x, y;
> - const uint32_t *dst_top = dst - dst_linesize_32;
> -
> - /* SIMD-friendly assumptions allowed here */
> - av_assert2(!(w & 0xf) && w >= 16 && h >= 1);
> -
> - for (y = 0; y < h; y++) {
> - for (x = 0; x < w; x += 4) {
> - const int d0 = s1[x ] - s2[x ];
> - const int d1 = s1[x + 1] - s2[x + 1];
> - const int d2 = s1[x + 2] - s2[x + 2];
> - const int d3 = s1[x + 3] - s2[x + 3];
> -
> - dst[x ] = dst_top[x ] - dst_top[x - 1] + d0*d0;
> - dst[x + 1] = dst_top[x + 1] - dst_top[x ] + d1*d1;
> - dst[x + 2] = dst_top[x + 2] - dst_top[x + 1] + d2*d2;
> - dst[x + 3] = dst_top[x + 3] - dst_top[x + 2] + d3*d3;
> -
> - dst[x ] += dst[x - 1];
> - dst[x + 1] += dst[x ];
> - dst[x + 2] += dst[x + 1];
> - dst[x + 3] += dst[x + 2];
> - }
> - s1 += linesize1;
> - s2 += linesize2;
> - dst += dst_linesize_32;
> - dst_top += dst_linesize_32;
> - }
> -}
> -
> -/**
> - * Compute squared difference of an unsafe area (the zone nor s1 nor s2 could
> - * be readable).
> - *
> - * On the other hand, the line above dst and the column to its left are always
> - * readable.
> - *
> - * There is little point in having this function SIMDified as it is likely too
> - * complex and only handle small portions of the image.
> - *
> - * @param dst integral image
> - * @param dst_linesize_32 integral image linesize (in 32-bit integers unit)
> - * @param startx integral starting x position
> - * @param starty integral starting y position
> - * @param src source plane buffer
> - * @param linesize source plane linesize
> - * @param offx source offsetting in x
> - * @param offy source offsetting in y
> - * @paran r absolute maximum source offsetting
> - * @param sw source width
> - * @param sh source height
> - * @param w width to compute
> - * @param h height to compute
> - */
> -static inline void compute_unsafe_ssd_integral_image(uint32_t *dst, ptrdiff_t dst_linesize_32,
> - int startx, int starty,
> - const uint8_t *src, ptrdiff_t linesize,
> - int offx, int offy, int r, int sw, int sh,
> - int w, int h)
> -{
> - int x, y;
> -
> - for (y = starty; y < starty + h; y++) {
> - uint32_t acc = dst[y*dst_linesize_32 + startx - 1] - dst[(y-1)*dst_linesize_32 + startx - 1];
> - const int s1y = av_clip(y - r, 0, sh - 1);
> - const int s2y = av_clip(y - (r + offy), 0, sh - 1);
> -
> - for (x = startx; x < startx + w; x++) {
> - const int s1x = av_clip(x - r, 0, sw - 1);
> - const int s2x = av_clip(x - (r + offx), 0, sw - 1);
> - const uint8_t v1 = src[s1y*linesize + s1x];
> - const uint8_t v2 = src[s2y*linesize + s2x];
> - const int d = v1 - v2;
> - acc += d * d;
> - dst[y*dst_linesize_32 + x] = dst[(y-1)*dst_linesize_32 + x] + acc;
> - }
> - }
> -}
> -
> -/*
> - * Compute the sum of squared difference integral image
> - * http://www.ipol.im/pub/art/2014/57/
> - * Integral Images for Block Matching - Gabriele Facciolo, Nicolas Limare, Enric Meinhardt-Llopis
> - *
> - * @param ii integral image of dimension (w+e*2) x (h+e*2) with
> - * an additional zeroed top line and column already
> - * "applied" to the pointer value
> - * @param ii_linesize_32 integral image linesize (in 32-bit integers unit)
> - * @param src source plane buffer
> - * @param linesize source plane linesize
> - * @param offx x-offsetting ranging in [-e;e]
> - * @param offy y-offsetting ranging in [-e;e]
> - * @param w source width
> - * @param h source height
> - * @param e research padding edge
> - */
> -static void compute_ssd_integral_image(const NLMeansDSPContext *dsp,
> - uint32_t *ii, ptrdiff_t ii_linesize_32,
> - const uint8_t *src, ptrdiff_t linesize, int offx, int offy,
> - int e, int w, int h)
> -{
> - // ii has a surrounding padding of thickness "e"
> - const int ii_w = w + e*2;
> - const int ii_h = h + e*2;
> -
> - // we center the first source
> - const int s1x = e;
> - const int s1y = e;
> -
> - // 2nd source is the frame with offsetting
> - const int s2x = e + offx;
> - const int s2y = e + offy;
> -
> - // get the dimension of the overlapping rectangle where it is always safe
> - // to compare the 2 sources pixels
> - const int startx_safe = FFMAX(s1x, s2x);
> - const int starty_safe = FFMAX(s1y, s2y);
> - const int u_endx_safe = FFMIN(s1x + w, s2x + w); // unaligned
> - const int endy_safe = FFMIN(s1y + h, s2y + h);
> -
> - // deduce the safe area width and height
> - const int safe_pw = (u_endx_safe - startx_safe) & ~0xf;
> - const int safe_ph = endy_safe - starty_safe;
> -
> - // adjusted end x position of the safe area after width of the safe area gets aligned
> - const int endx_safe = startx_safe + safe_pw;
> -
> - // top part where only one of s1 and s2 is still readable, or none at all
> - compute_unsafe_ssd_integral_image(ii, ii_linesize_32,
> - 0, 0,
> - src, linesize,
> - offx, offy, e, w, h,
> - ii_w, starty_safe);
> -
> - // fill the left column integral required to compute the central
> - // overlapping one
> - compute_unsafe_ssd_integral_image(ii, ii_linesize_32,
> - 0, starty_safe,
> - src, linesize,
> - offx, offy, e, w, h,
> - startx_safe, safe_ph);
> -
> - // main and safe part of the integral
> - av_assert1(startx_safe - s1x >= 0); av_assert1(startx_safe - s1x < w);
> - av_assert1(starty_safe - s1y >= 0); av_assert1(starty_safe - s1y < h);
> - av_assert1(startx_safe - s2x >= 0); av_assert1(startx_safe - s2x < w);
> - av_assert1(starty_safe - s2y >= 0); av_assert1(starty_safe - s2y < h);
> - if (safe_pw && safe_ph)
> - dsp->compute_safe_ssd_integral_image(ii + starty_safe*ii_linesize_32 + startx_safe, ii_linesize_32,
> - src + (starty_safe - s1y) * linesize + (startx_safe - s1x), linesize,
> - src + (starty_safe - s2y) * linesize + (startx_safe - s2x), linesize,
> - safe_pw, safe_ph);
> -
> - // right part of the integral
> - compute_unsafe_ssd_integral_image(ii, ii_linesize_32,
> - endx_safe, starty_safe,
> - src, linesize,
> - offx, offy, e, w, h,
> - ii_w - endx_safe, safe_ph);
> -
> - // bottom part where only one of s1 and s2 is still readable, or none at all
> - compute_unsafe_ssd_integral_image(ii, ii_linesize_32,
> - 0, endy_safe,
> - src, linesize,
> - offx, offy, e, w, h,
> - ii_w, ii_h - endy_safe);
> -}
> -
> -static int config_input(AVFilterLink *inlink)
> -{
> - AVFilterContext *ctx = inlink->dst;
> - NLMeansContext *s = ctx->priv;
> - const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
> - const int e = FFMAX(s->research_hsize, s->research_hsize_uv)
> - + FFMAX(s->patch_hsize, s->patch_hsize_uv);
> -
> - s->chroma_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
> - s->chroma_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
> - s->nb_planes = av_pix_fmt_count_planes(inlink->format);
> -
> - /* Allocate the integral image with extra edges of thickness "e"
> - *
> - * +_+-------------------------------+
> - * |0|0000000000000000000000000000000|
> - * +-x-------------------------------+
> - * |0|\ ^ |
> - * |0| ii | e |
> - * |0| v |
> - * |0| +-----------------------+ |
> - * |0| | | |
> - * |0|<->| | |
> - * |0| e | | |
> - * |0| | | |
> - * |0| +-----------------------+ |
> - * |0| |
> - * |0| |
> - * |0| |
> - * +-+-------------------------------+
> - */
> - s->ii_w = inlink->w + e*2;
> - s->ii_h = inlink->h + e*2;
> -
> - // align to 4 the linesize, "+1" is for the space of the left 0-column
> - s->ii_lz_32 = FFALIGN(s->ii_w + 1, 4);
> -
> - // "+1" is for the space of the top 0-line
> - s->ii_orig = av_mallocz_array(s->ii_h + 1, s->ii_lz_32 * sizeof(*s->ii_orig));
> - if (!s->ii_orig)
> - return AVERROR(ENOMEM);
> -
> - // skip top 0-line and left 0-column
> - s->ii = s->ii_orig + s->ii_lz_32 + 1;
> -
> - // allocate weighted average for every pixel
> - s->wa_linesize = inlink->w;
> - s->wa = av_malloc_array(s->wa_linesize, inlink->h * sizeof(*s->wa));
> - if (!s->wa)
> - return AVERROR(ENOMEM);
> -
> - return 0;
> -}
> -
> -struct thread_data {
> - const uint8_t *src;
> - ptrdiff_t src_linesize;
> - int startx, starty;
> - int endx, endy;
> - const uint32_t *ii_start;
> - int p;
> -};
> -
> -static int nlmeans_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
> -{
> - int x, y;
> - NLMeansContext *s = ctx->priv;
> - const struct thread_data *td = arg;
> - const ptrdiff_t src_linesize = td->src_linesize;
> - const int process_h = td->endy - td->starty;
> - const int slice_start = (process_h * jobnr ) / nb_jobs;
> - const int slice_end = (process_h * (jobnr+1)) / nb_jobs;
> - const int starty = td->starty + slice_start;
> - const int endy = td->starty + slice_end;
> - const int p = td->p;
> - const uint32_t *ii = td->ii_start + (starty - p - 1) * s->ii_lz_32 - p - 1;
> - const int dist_b = 2*p + 1;
> - const int dist_d = dist_b * s->ii_lz_32;
> - const int dist_e = dist_d + dist_b;
> -
> - for (y = starty; y < endy; y++) {
> - const uint8_t *src = td->src + y*src_linesize;
> - struct weighted_avg *wa = s->wa + y*s->wa_linesize;
> - for (x = td->startx; x < td->endx; x++) {
> - /*
> - * M is a discrete map where every entry contains the sum of all the entries
> - * in the rectangle from the top-left origin of M to its coordinate. In the
> - * following schema, "i" contains the sum of the whole map:
> - *
> - * M = +----------+-----------------+----+
> - * | | | |
> - * | | | |
> - * | a| b| c|
> - * +----------+-----------------+----+
> - * | | | |
> - * | | | |
> - * | | X | |
> - * | | | |
> - * | d| e| f|
> - * +----------+-----------------+----+
> - * | | | |
> - * | g| h| i|
> - * +----------+-----------------+----+
> - *
> - * The sum of the X box can be calculated with:
> - * X = e-d-b+a
> - *
> - * See https://en.wikipedia.org/wiki/Summed_area_table
> - *
> - * The compute*_ssd functions compute the integral image M where every entry
> - * contains the sum of the squared difference of every corresponding pixels of
> - * two input planes of the same size as M.
> - */
> - const uint32_t a = ii[x];
> - const uint32_t b = ii[x + dist_b];
> - const uint32_t d = ii[x + dist_d];
> - const uint32_t e = ii[x + dist_e];
> - const uint32_t patch_diff_sq = e - d - b + a;
> -
> - if (patch_diff_sq < s->max_meaningful_diff) {
> - const float weight = s->weight_lut[patch_diff_sq]; // exp(-patch_diff_sq * s->pdiff_scale)
> - wa[x].total_weight += weight;
> - wa[x].sum += weight * src[x];
> - }
> - }
> - ii += s->ii_lz_32;
> - }
> - return 0;
> -}
> -
> -static void weight_averages(uint8_t *dst, ptrdiff_t dst_linesize,
> - const uint8_t *src, ptrdiff_t src_linesize,
> - struct weighted_avg *wa, ptrdiff_t wa_linesize,
> - int w, int h)
> -{
> - int x, y;
> -
> - for (y = 0; y < h; y++) {
> - for (x = 0; x < w; x++) {
> - // Also weight the centered pixel
> - wa[x].total_weight += 1.f;
> - wa[x].sum += 1.f * src[x];
> - dst[x] = av_clip_uint8(wa[x].sum / wa[x].total_weight + 0.5f);
> - }
> - dst += dst_linesize;
> - src += src_linesize;
> - wa += wa_linesize;
> - }
> -}
> -
> -static int nlmeans_plane(AVFilterContext *ctx, int w, int h, int p, int r,
> - uint8_t *dst, ptrdiff_t dst_linesize,
> - const uint8_t *src, ptrdiff_t src_linesize)
> -{
> - int offx, offy;
> - NLMeansContext *s = ctx->priv;
> - /* patches center points cover the whole research window so the patches
> - * themselves overflow the research window */
> - const int e = r + p;
> - /* focus an integral pointer on the centered image (s1) */
> - const uint32_t *centered_ii = s->ii + e*s->ii_lz_32 + e;
> -
> - memset(s->wa, 0, s->wa_linesize * h * sizeof(*s->wa));
> -
> - for (offy = -r; offy <= r; offy++) {
> - for (offx = -r; offx <= r; offx++) {
> - if (offx || offy) {
> - struct thread_data td = {
> - .src = src + offy*src_linesize + offx,
> - .src_linesize = src_linesize,
> - .startx = FFMAX(0, -offx),
> - .starty = FFMAX(0, -offy),
> - .endx = FFMIN(w, w - offx),
> - .endy = FFMIN(h, h - offy),
> - .ii_start = centered_ii + offy*s->ii_lz_32 + offx,
> - .p = p,
> - };
> -
> - compute_ssd_integral_image(&s->dsp, s->ii, s->ii_lz_32,
> - src, src_linesize,
> - offx, offy, e, w, h);
> - ctx->internal->execute(ctx, nlmeans_slice, &td, NULL,
> - FFMIN(td.endy - td.starty, ff_filter_get_nb_threads(ctx)));
> - }
> - }
> - }
> -
> - weight_averages(dst, dst_linesize, src, src_linesize,
> - s->wa, s->wa_linesize, w, h);
> -
> - return 0;
> -}
> -
> static int filter_frame(AVFilterLink *inlink, AVFrame *in)
> {
> int i;
> @@ -489,15 +119,30 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
> const int h = i ? s->chroma_h : inlink->h;
> const int p = i ? s->patch_hsize_uv : s->patch_hsize;
> const int r = i ? s->research_hsize_uv : s->research_hsize;
> - nlmeans_plane(ctx, w, h, p, r,
> - out->data[i], out->linesize[i],
> - in->data[i], in->linesize[i]);
> + s->nlmeans_plane(ctx, w, h, p, r,
> + out->data[i], out->linesize[i],
> + in->data[i], in->linesize[i]);
> }
>
> av_frame_free(&in);
> return ff_filter_frame(outlink, out);
> }
>
> +void ff_nlmeans_init(NLMeansDSPContext *dsp, int depth)
> +{
> + switch (depth) {
> + case 8: dsp->compute_safe_ssd_integral_image32 = compute_safe_ssd_integral_image_c8; break;
> + case 9: dsp->compute_safe_ssd_integral_image64 = compute_safe_ssd_integral_image_c9; break;
> + case 10: dsp->compute_safe_ssd_integral_image64 = compute_safe_ssd_integral_image_c10; break;
> + case 12: dsp->compute_safe_ssd_integral_image64 = compute_safe_ssd_integral_image_c12; break;
> + case 14: dsp->compute_safe_ssd_integral_image64 = compute_safe_ssd_integral_image_c14; break;
> + case 16: dsp->compute_safe_ssd_integral_image64 = compute_safe_ssd_integral_image_c16; break;
> + }
> +
> + if (ARCH_AARCH64)
> + ff_nlmeans_init_aarch64(dsp, depth);
> +}
> +
> #define CHECK_ODD_FIELD(field, name) do { \
> if (!(s->field & 1)) { \
> s->field |= 1; \
> @@ -506,26 +151,22 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
> } \
> } while (0)
>
> -void ff_nlmeans_init(NLMeansDSPContext *dsp)
> -{
> - dsp->compute_safe_ssd_integral_image = compute_safe_ssd_integral_image_c;
> -
> - if (ARCH_AARCH64)
> - ff_nlmeans_init_aarch64(dsp);
> -}
> -
> -static av_cold int init(AVFilterContext *ctx)
> +static int config_input(AVFilterLink *inlink)
> {
> - int i;
> + AVFilterContext *ctx = inlink->dst;
> NLMeansContext *s = ctx->priv;
> - const double h = s->sigma * 10.;
> + const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
> + double h;
> + int e;
>
> + s->depth = desc->comp[0].depth;
> + h = s->sigma * 10. * (1 << (s->depth - 8));
> s->pdiff_scale = 1. / (h * h);
> - s->max_meaningful_diff = log(255.) / s->pdiff_scale;
> + s->max_meaningful_diff = FFMIN(log(255.) / s->pdiff_scale, INT32_MAX / 8);
> s->weight_lut = av_calloc(s->max_meaningful_diff, sizeof(*s->weight_lut));
> if (!s->weight_lut)
> return AVERROR(ENOMEM);
> - for (i = 0; i < s->max_meaningful_diff; i++)
> + for (int i = 0; i < s->max_meaningful_diff; i++)
> s->weight_lut[i] = exp(-i * s->pdiff_scale);
>
> CHECK_ODD_FIELD(research_size, "Luma research window");
> @@ -542,11 +183,75 @@ static av_cold int init(AVFilterContext *ctx)
> s->patch_hsize = s->patch_size / 2;
> s->patch_hsize_uv = s->patch_size_uv / 2;
>
> + e = FFMAX(s->research_hsize, s->research_hsize_uv) +
> + FFMAX(s->patch_hsize, s->patch_hsize_uv);
> av_log(ctx, AV_LOG_INFO, "Research window: %dx%d / %dx%d, patch size: %dx%d / %dx%d\n",
> s->research_size, s->research_size, s->research_size_uv, s->research_size_uv,
> s->patch_size, s->patch_size, s->patch_size_uv, s->patch_size_uv);
>
> - ff_nlmeans_init(&s->dsp);
> + ff_nlmeans_init(&s->dsp, s->depth);
> +
> + s->chroma_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
> + s->chroma_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
> + s->nb_planes = av_pix_fmt_count_planes(inlink->format);
> +
> + /* Allocate the integral image with extra edges of thickness "e"
> + *
> + * +_+-------------------------------+
> + * |0|0000000000000000000000000000000|
> + * +-x-------------------------------+
> + * |0|\ ^ |
> + * |0| ii | e |
> + * |0| v |
> + * |0| +-----------------------+ |
> + * |0| | | |
> + * |0|<->| | |
> + * |0| e | | |
> + * |0| | | |
> + * |0| +-----------------------+ |
> + * |0| |
> + * |0| |
> + * |0| |
> + * +-+-------------------------------+
> + */
> + s->ii_w = inlink->w + e*2;
> + s->ii_h = inlink->h + e*2;
> +
> + // align to 4 the linesize, "+1" is for the space of the left 0-column
> + s->ii_lz_32 = FFALIGN(s->ii_w + 1, 4);
> +
> + if (s->depth <= 8) {
> + // "+1" is for the space of the top 0-line
> + s->ii_orig32 = av_mallocz_array(s->ii_h + 1, s->ii_lz_32 * sizeof(*s->ii_orig32));
> + if (!s->ii_orig32)
> + return AVERROR(ENOMEM);
> +
> + // skip top 0-line and left 0-column
> + s->ii32 = s->ii_orig32 + s->ii_lz_32 + 1;
> + } else {
> + // "+1" is for the space of the top 0-line
> + s->ii_orig64 = av_mallocz_array(s->ii_h + 1, s->ii_lz_32 * sizeof(*s->ii_orig64));
> + if (!s->ii_orig64)
> + return AVERROR(ENOMEM);
> +
> + // skip top 0-line and left 0-column
> + s->ii64 = s->ii_orig64 + s->ii_lz_32 + 1;
> + }
> +
> + // allocate weighted average for every pixel
> + s->wa_linesize = inlink->w;
> + s->wa = av_malloc_array(s->wa_linesize, inlink->h * sizeof(*s->wa));
> + if (!s->wa)
> + return AVERROR(ENOMEM);
> +
> + switch (s->depth) {
> + case 8: s->nlmeans_plane = nlmeans_plane8; break;
> + case 9: s->nlmeans_plane = nlmeans_plane9; break;
> + case 10: s->nlmeans_plane = nlmeans_plane10; break;
> + case 12: s->nlmeans_plane = nlmeans_plane12; break;
> + case 14: s->nlmeans_plane = nlmeans_plane14; break;
> + case 16: s->nlmeans_plane = nlmeans_plane16; break;
> + }
>
> return 0;
> }
> @@ -555,7 +260,8 @@ static av_cold void uninit(AVFilterContext *ctx)
> {
> NLMeansContext *s = ctx->priv;
> av_freep(&s->weight_lut);
> - av_freep(&s->ii_orig);
> + av_freep(&s->ii_orig32);
> + av_freep(&s->ii_orig64);
> av_freep(&s->wa);
> }
>
> @@ -581,7 +287,6 @@ AVFilter ff_vf_nlmeans = {
> .name = "nlmeans",
> .description = NULL_IF_CONFIG_SMALL("Non-local means denoiser."),
> .priv_size = sizeof(NLMeansContext),
> - .init = init,
> .uninit = uninit,
> .query_formats = query_formats,
> .inputs = nlmeans_inputs,
> diff --git a/libavfilter/vf_nlmeans.h b/libavfilter/vf_nlmeans.h
> index 0a9aab2928..814b95e10f 100644
> --- a/libavfilter/vf_nlmeans.h
> +++ b/libavfilter/vf_nlmeans.h
> @@ -23,13 +23,60 @@
> #include <stdint.h>
>
> typedef struct NLMeansDSPContext {
> - void (*compute_safe_ssd_integral_image)(uint32_t *dst, ptrdiff_t dst_linesize_32,
> - const uint8_t *s1, ptrdiff_t linesize1,
> - const uint8_t *s2, ptrdiff_t linesize2,
> - int w, int h);
> + void (*compute_safe_ssd_integral_image32)(uint32_t *dst, ptrdiff_t dst_linesize_32,
> + const uint8_t *s1, ptrdiff_t linesize1,
> + const uint8_t *s2, ptrdiff_t linesize2,
> + int w, int h);
> + void (*compute_safe_ssd_integral_image64)(uint64_t *dst, ptrdiff_t dst_linesize_32,
> + const uint8_t *s1, ptrdiff_t linesize1,
> + const uint8_t *s2, ptrdiff_t linesize2,
> + int w, int h);
> } NLMeansDSPContext;
>
> -void ff_nlmeans_init(NLMeansDSPContext *dsp);
> -void ff_nlmeans_init_aarch64(NLMeansDSPContext *dsp);
> +struct weighted_avg {
> + float total_weight;
> + float sum;
> +};
> +
> +struct thread_data {
> + const uint8_t *src;
> + ptrdiff_t src_linesize;
> + int startx, starty;
> + int endx, endy;
> + const uint32_t *ii_start32;
> + const uint64_t *ii_start64;
> + int p;
> +};
> +
> +typedef struct NLMeansContext {
> + const AVClass *class;
> + int nb_planes;
> + int depth;
> + int chroma_w, chroma_h;
> + double pdiff_scale; // invert of the filtering parameter (sigma*10) squared
> + double sigma; // denoising strength
> + int patch_size, patch_hsize; // patch size and half size
> + int patch_size_uv, patch_hsize_uv; // patch size and half size for chroma planes
> + int research_size, research_hsize; // research size and half size
> + int research_size_uv, research_hsize_uv; // research size and half size for chroma planes
> + uint32_t *ii_orig32; // integral image 32-bit
> + uint32_t *ii32; // integral image 32-bit starting after the 0-line and 0-column
> + uint64_t *ii_orig64; // integral image 64-bit
> + uint64_t *ii64; // integral image 64-bit starting after the 0-line and 0-column
> + int ii_w, ii_h; // width and height of the integral image
> + ptrdiff_t ii_lz_32; // linesize in 32-bit units of the integral image
> + struct weighted_avg *wa; // weighted average of every pixel
> + ptrdiff_t wa_linesize; // linesize for wa in struct size unit
> + float *weight_lut; // lookup table mapping (scaled) patch differences to their associated weights
> + uint32_t max_meaningful_diff; // maximum difference considered (if the patch difference is too high we ignore the pixel)
> + NLMeansDSPContext dsp;
> +
> + int (*nlmeans_plane)(AVFilterContext *ctx, int w, int h, int p, int r,
> + uint8_t *dst, ptrdiff_t dst_linesize,
> + const uint8_t *src, ptrdiff_t src_linesize);
> +} NLMeansContext;
> +
> +void ff_nlmeans_init(NLMeansDSPContext *dsp, int depth);
> +void ff_nlmeans_init_aarch64(NLMeansDSPContext *dsp, int depth);
>
> #endif /* AVFILTER_NLMEANS_H */
> --
LGTM now
More information about the ffmpeg-devel
mailing list