[FFmpeg-devel] [PATCH 4/4] avfilter: add a generic filter for rgb proccessing with dnn networks

Guo, Yejun yejun.guo at intel.com
Wed Oct 16 05:53:06 EEST 2019


This filter accepts all the dnn networks which do image processing
on RGB-based format. Currently, frame with formats rgb24 and bgr24
are supported. Other formats such as gray and YUV can be supported
in separated filters. The dnn network can accept RGB data in float32
or uint8 format. And the dnn network can change frame size.

Let's take an example with the following python script. This script
halves the value of the first channel of the pixel.
import tensorflow as tf
import numpy as np
import scipy.misc
in_img = scipy.misc.imread('in.bmp')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]
filter_data = np.array([0.5, 0, 0, 0, 1., 0, 0, 0, 1.]).reshape(1,1,3,3).astype(np.float32)
filter = tf.Variable(filter_data)
x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
y = tf.nn.conv2d(x, filter, strides=[1, 1, 1, 1], padding='VALID', name='dnn_out')
sess=tf.Session()
sess.run(tf.global_variables_initializer())
output = sess.run(y, feed_dict={x: in_data})
graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'halve_first_channel.pb', as_text=False)
output = output * 255.0
output = output.astype(np.uint8)
scipy.misc.imsave("out.bmp", np.squeeze(output))

- generate halve_first_channel.pb with the above script
- generate halve_first_channel.model with tools/python/convert.py
- try with following commands
  ./ffmpeg -i input.jpg -vf dnn_rgb_processing=model=halve_first_channel.model:input=dnn_in:output=dnn_out:fmt=rgb24:dnn_backend=native -y out.native.png
  ./ffmpeg -i input.jpg -vf dnn_rgb_processing=model=halve_first_channel.pb:input=dnn_in:output=dnn_out:fmt=rgb24:dnn_backend=tensorflow -y out.tf.png

Signed-off-by: Guo, Yejun <yejun.guo at intel.com>
---
 configure                           |   1 +
 doc/filters.texi                    |  46 ++++++
 libavfilter/Makefile                |   2 +
 libavfilter/allfilters.c            |   1 +
 libavfilter/dnn_filter_utils.c      |  81 +++++++++++
 libavfilter/dnn_filter_utils.h      |  35 +++++
 libavfilter/vf_dnn_rgb_processing.c | 276 ++++++++++++++++++++++++++++++++++++
 7 files changed, 442 insertions(+)
 create mode 100644 libavfilter/dnn_filter_utils.c
 create mode 100644 libavfilter/dnn_filter_utils.h
 create mode 100644 libavfilter/vf_dnn_rgb_processing.c

diff --git a/configure b/configure
index 8413826..b8619f0 100755
--- a/configure
+++ b/configure
@@ -3460,6 +3460,7 @@ derain_filter_select="dnn"
 deshake_filter_select="pixelutils"
 deshake_opencl_filter_deps="opencl"
 dilation_opencl_filter_deps="opencl"
+dnn_rgb_processing_filter_select="dnn"
 drawtext_filter_deps="libfreetype"
 drawtext_filter_suggest="libfontconfig libfribidi"
 elbg_filter_deps="avcodec"
diff --git a/doc/filters.texi b/doc/filters.texi
index 6865f0f..21e9aa8 100644
--- a/doc/filters.texi
+++ b/doc/filters.texi
@@ -8877,6 +8877,52 @@ ffmpeg -i INPUT -f lavfi -i nullsrc=hd720,geq='r=128+80*(sin(sqrt((X-W/2)*(X-W/2
 @end example
 @end itemize
 
+ at section dnn_rgb_processing
+
+Do image processing with deep neural networks for RGB-based format. The format of network
+input and output can be RGB or BGR, the data type of each color channel cab be uint8 or float32.
+The input format and output format should be same, the data type can be same or different.
+The network can change the frame size.
+
+The filter accepts the following options:
+
+ at table @option
+ at item dnn_backend
+Specify which DNN backend to use for model loading and execution. This option accepts
+the following values:
+
+ at table @samp
+ at item native
+Native implementation of DNN loading and execution.
+
+ at item tensorflow
+TensorFlow backend. To enable this backend you
+need to install the TensorFlow for C library (see
+ at url{https://www.tensorflow.org/install/install_c}) and configure FFmpeg with
+ at code{--enable-libtensorflow}
+ at end table
+
+Default value is @samp{native}.
+
+ at item model
+Set path to model file specifying network architecture and its parameters.
+Note that different backends use different file formats. TensorFlow and native
+backend can load files for only its format.
+
+Native model file (.model) can be generated from TensorFlow model file (.pb) by using tools/python/convert.py
+
+ at item input
+Set the input name of the dnn network.
+
+ at item output
+Set the output name of the dnn network.
+
+ at item fmt
+Set the pixel format for the Frame. Allowed values are @code{AV_PIX_FMT_RGB24}, and @code{AV_PIX_FMT_BGR24}.
+Default value is @code{AV_PIX_FMT_RGB24}.
+
+ at end table
+
 @section drawbox
 
 Draw a colored box on the input image.
diff --git a/libavfilter/Makefile b/libavfilter/Makefile
index 16bb8cd..2f612d7 100644
--- a/libavfilter/Makefile
+++ b/libavfilter/Makefile
@@ -27,6 +27,7 @@ OBJS-$(HAVE_THREADS)                         += pthread.o
 # subsystems
 OBJS-$(CONFIG_QSVVPP)                        += qsvvpp.o
 OBJS-$(CONFIG_SCENE_SAD)                     += scene_sad.o
+OBJS-$(CONFIG_DNN)                           += dnn_filter_utils.o
 include $(SRC_PATH)/libavfilter/dnn/Makefile
 
 # audio filters
@@ -222,6 +223,7 @@ OBJS-$(CONFIG_DILATION_OPENCL_FILTER)        += vf_neighbor_opencl.o opencl.o \
                                                 opencl/neighbor.o
 OBJS-$(CONFIG_DISPLACE_FILTER)               += vf_displace.o framesync.o
 OBJS-$(CONFIG_DOUBLEWEAVE_FILTER)            += vf_weave.o
+OBJS-$(CONFIG_DNN_RGB_PROCESSING_FILTER)     += vf_dnn_rgb_processing.o
 OBJS-$(CONFIG_DRAWBOX_FILTER)                += vf_drawbox.o
 OBJS-$(CONFIG_DRAWGRAPH_FILTER)              += f_drawgraph.o
 OBJS-$(CONFIG_DRAWGRID_FILTER)               += vf_drawbox.o
diff --git a/libavfilter/allfilters.c b/libavfilter/allfilters.c
index 4f8b303..d8a21c1 100644
--- a/libavfilter/allfilters.c
+++ b/libavfilter/allfilters.c
@@ -207,6 +207,7 @@ extern AVFilter ff_vf_detelecine;
 extern AVFilter ff_vf_dilation;
 extern AVFilter ff_vf_dilation_opencl;
 extern AVFilter ff_vf_displace;
+extern AVFilter ff_vf_dnn_rgb_processing;
 extern AVFilter ff_vf_doubleweave;
 extern AVFilter ff_vf_drawbox;
 extern AVFilter ff_vf_drawgraph;
diff --git a/libavfilter/dnn_filter_utils.c b/libavfilter/dnn_filter_utils.c
new file mode 100644
index 0000000..2ae0748
--- /dev/null
+++ b/libavfilter/dnn_filter_utils.c
@@ -0,0 +1,81 @@
+/*
+ * Copyright (c) 2019 Guo Yejun
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "dnn_filter_utils.h"
+#include "libavutil/avassert.h"
+#include "libavutil/common.h"
+
+int copy_from_frame_to_dnn(DNNData *dnn_data, const AVFrame *in)
+{
+    // extend this function to support more formats
+    av_assert0(in->format == AV_PIX_FMT_RGB24 || in->format == AV_PIX_FMT_RGB24);
+
+    if (dnn_data->dt == DNN_FLOAT) {
+        float *dnn_input = dnn_data->data;
+        for (int i = 0; i < in->height; i++) {
+            for(int j = 0; j < in->width * 3; j++) {
+                int k = i * in->linesize[0] + j;
+                int t = i * in->width * 3 + j;
+                dnn_input[t] = in->data[0][k] / 255.0f;
+            }
+        }
+    } else {
+        uint8_t *dnn_input = dnn_data->data;
+        av_assert0(dnn_data->dt == DNN_UINT8);
+        for (int i = 0; i < in->height; i++) {
+            for(int j = 0; j < in->width * 3; j++) {
+                int k = i * in->linesize[0] + j;
+                int t = i * in->width * 3 + j;
+                dnn_input[t] = in->data[0][k];
+            }
+        }
+    }
+
+    return 0;
+}
+
+int copy_from_dnn_to_frame(AVFrame *out, const DNNData *dnn_data)
+{
+    // extend this function to support more formats
+    av_assert0(out->format == AV_PIX_FMT_RGB24 || out->format == AV_PIX_FMT_RGB24);
+
+    if (dnn_data->dt == DNN_FLOAT) {
+        float *dnn_output = dnn_data->data;
+        for (int i = 0; i < out->height; i++) {
+            for(int j = 0; j < out->width * 3; j++) {
+                int k = i * out->linesize[0] + j;
+                int t = i * out->width * 3 + j;
+                out->data[0][k] = av_clip((int)(dnn_output[t] * 255.0f), 0, 255);
+            }
+        }
+    } else {
+        uint8_t *dnn_output = dnn_data->data;
+        av_assert0(dnn_data->dt == DNN_UINT8);
+        for (int i = 0; i < out->height; i++) {
+            for(int j = 0; j < out->width * 3; j++) {
+                int k = i * out->linesize[0] + j;
+                int t = i * out->width * 3 + j;
+                out->data[0][k] = dnn_output[t];
+            }
+        }
+    }
+
+    return 0;
+}
diff --git a/libavfilter/dnn_filter_utils.h b/libavfilter/dnn_filter_utils.h
new file mode 100644
index 0000000..1e72874
--- /dev/null
+++ b/libavfilter/dnn_filter_utils.h
@@ -0,0 +1,35 @@
+/*
+ * Copyright (c) 2019 Guo Yejun
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * DNN filter utilities.
+ */
+
+#ifndef AVFILTER_DNN_FILTER_UTILS_H
+#define AVFILTER_DNN_FILTER_UTILS_H
+
+#include "dnn_interface.h"
+#include "libavutil/frame.h"
+
+int copy_from_frame_to_dnn(DNNData *dnn_data, const AVFrame *in);
+int copy_from_dnn_to_frame(AVFrame *out, const DNNData *dnn_data);
+
+#endif
diff --git a/libavfilter/vf_dnn_rgb_processing.c b/libavfilter/vf_dnn_rgb_processing.c
new file mode 100644
index 0000000..f81b14d
--- /dev/null
+++ b/libavfilter/vf_dnn_rgb_processing.c
@@ -0,0 +1,276 @@
+/*
+ * Copyright (c) 2019 Guo Yejun
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * implementing a generic RGB-based image processing filter using deep learning networks.
+ */
+
+#include "libavformat/avio.h"
+#include "libavutil/opt.h"
+#include "libavutil/pixdesc.h"
+#include "libavutil/avassert.h"
+#include "avfilter.h"
+#include "dnn_interface.h"
+#include "formats.h"
+#include "internal.h"
+#include "dnn_filter_utils.h"
+
+typedef struct DnnRgbProcessingContext {
+    const AVClass *class;
+
+    char *model_filename;
+    DNNBackendType backend_type;
+    enum AVPixelFormat fmt;
+    char *model_inputname;
+    char *model_outputname;
+
+    DNNModule *dnn_module;
+    DNNModel *model;
+
+    // input & output of the model at execution time
+    DNNData input;
+    DNNData output;
+} DnnRgbProcessingContext;
+
+#define OFFSET(x) offsetof(DnnRgbProcessingContext, x)
+#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
+static const AVOption dnn_rgb_processing_options[] = {
+    { "dnn_backend", "DNN backend",                OFFSET(backend_type),     AV_OPT_TYPE_INT,       { .i64 = 0 },    0, 1, FLAGS, "backend" },
+    { "native",      "native backend flag",        0,                        AV_OPT_TYPE_CONST,     { .i64 = 0 },    0, 0, FLAGS, "backend" },
+#if (CONFIG_LIBTENSORFLOW == 1)
+    { "tensorflow",  "tensorflow backend flag",    0,                        AV_OPT_TYPE_CONST,     { .i64 = 1 },    0, 0, FLAGS, "backend" },
+#endif
+    { "model",       "path to model file",         OFFSET(model_filename),   AV_OPT_TYPE_STRING,    { .str = NULL }, 0, 0, FLAGS },
+    { "input",       "input name of the model",    OFFSET(model_inputname),  AV_OPT_TYPE_STRING,    { .str = NULL }, 0, 0, FLAGS },
+    { "output",      "output name of the model",   OFFSET(model_outputname), AV_OPT_TYPE_STRING,    { .str = NULL }, 0, 0, FLAGS },
+    { "fmt",         "AVPixelFormat of the frame", OFFSET(fmt),              AV_OPT_TYPE_PIXEL_FMT, { .i64=AV_PIX_FMT_RGB24 }, AV_PIX_FMT_NONE, AV_PIX_FMT_NB - 1, FLAGS },
+    { NULL }
+};
+
+AVFILTER_DEFINE_CLASS(dnn_rgb_processing);
+
+static av_cold int init(AVFilterContext *context)
+{
+    DnnRgbProcessingContext *ctx = context->priv;
+    int supported = 0;
+    // support more formats such as AV_PIX_FMT_0RGB, AV_PIX_FMT_RGBP if necessary
+    const enum AVPixelFormat supported_pixel_fmts[] = {
+        AV_PIX_FMT_RGB24,
+        AV_PIX_FMT_BGR24,
+    };
+    for (int i = 0; i < sizeof(supported_pixel_fmts) / sizeof(enum AVPixelFormat); ++i) {
+        if (supported_pixel_fmts[i] == ctx->fmt) {
+            supported = 1;
+            break;
+        }
+    }
+    if (!supported) {
+        av_log(context, AV_LOG_ERROR, "pixel fmt %s not supported yet\n",
+                                       av_get_pix_fmt_name(ctx->fmt));
+        return AVERROR(AVERROR_INVALIDDATA);
+    }
+
+    if (!ctx->model_filename) {
+        av_log(ctx, AV_LOG_ERROR, "model file for network is not specified\n");
+        return AVERROR(EINVAL);
+    }
+    if (!ctx->model_inputname) {
+        av_log(ctx, AV_LOG_ERROR, "intput name of the model network is not specified\n");
+        return AVERROR(EINVAL);
+    }
+    if (!ctx->model_outputname) {
+        av_log(ctx, AV_LOG_ERROR, "output name of the model network is not specified\n");
+        return AVERROR(EINVAL);
+    }
+
+    ctx->dnn_module = ff_get_dnn_module(ctx->backend_type);
+    if (!ctx->dnn_module) {
+        av_log(ctx, AV_LOG_ERROR, "could not create DNN module for requested backend\n");
+        return AVERROR(ENOMEM);
+    }
+    if (!ctx->dnn_module->load_model) {
+        av_log(ctx, AV_LOG_ERROR, "load_model for network is not specified\n");
+        return AVERROR(EINVAL);
+    }
+
+    ctx->model = (ctx->dnn_module->load_model)(ctx->model_filename);
+    if (!ctx->model) {
+        av_log(ctx, AV_LOG_ERROR, "could not load DNN model\n");
+        return AVERROR(EINVAL);
+    }
+
+    return 0;
+}
+
+static int query_formats(AVFilterContext *context)
+{
+    AVFilterFormats *formats;
+    DnnRgbProcessingContext *ctx = context->priv;
+    enum AVPixelFormat pixel_fmts[2];
+    pixel_fmts[0] = ctx->fmt;
+    pixel_fmts[1] = AV_PIX_FMT_NONE;
+
+    formats = ff_make_format_list(pixel_fmts);
+    return ff_set_common_formats(context, formats);
+}
+
+static int config_input(AVFilterLink *inlink)
+{
+    AVFilterContext *context     = inlink->dst;
+    DnnRgbProcessingContext *ctx = context->priv;
+    DNNReturnType result;
+    DNNData dnn_data;
+
+    result = ctx->model->get_input(ctx->model->model, &dnn_data, ctx->model_inputname);
+    if (result != DNN_SUCCESS) {
+        av_log(ctx, AV_LOG_ERROR, "could not get input from the model\n");
+        return AVERROR(EIO);
+    }
+
+    // the design is to add explicit scale filter before this filter
+    if (dnn_data.height != -1 && dnn_data.height != inlink->h) {
+        av_log(ctx, AV_LOG_ERROR, "the model requires frame height %d but got %d\n",
+                                   dnn_data.height, inlink->h);
+        return AVERROR(EIO);
+    }
+    if (dnn_data.width != -1 && dnn_data.width != inlink->w) {
+        av_log(ctx, AV_LOG_ERROR, "the model requires frame width %d but got %d\n",
+                                   dnn_data.width, inlink->w);
+        return AVERROR(EIO);
+    }
+
+    if (dnn_data.channels != 3) {
+        av_log(ctx, AV_LOG_ERROR, "the model requires input channels %d\n",
+                                   dnn_data.channels);
+        return AVERROR(EIO);
+    }
+    if (dnn_data.dt != DNN_FLOAT && dnn_data.dt != DNN_UINT8) {
+        av_log(ctx, AV_LOG_ERROR, "only support dnn models with input data type as float32 and uint8.\n");
+        return AVERROR(EIO);
+    }
+
+    ctx->input.width    = inlink->w;
+    ctx->input.height   = inlink->h;
+    ctx->input.channels = 3;
+    ctx->input.dt = dnn_data.dt;
+
+    result = (ctx->model->set_input_output)(ctx->model->model,
+                                        &ctx->input, ctx->model_inputname,
+                                        (const char **)&ctx->model_outputname, 1);
+    if (result != DNN_SUCCESS) {
+        av_log(ctx, AV_LOG_ERROR, "could not set input and output for the model\n");
+        return AVERROR(EIO);
+    }
+
+    return 0;
+}
+
+static int config_output(AVFilterLink *outlink)
+{
+    AVFilterContext *context = outlink->src;
+    DnnRgbProcessingContext *ctx = context->priv;
+    DNNReturnType result;
+
+    // have a try run in case that the dnn model resize the frame
+    result = (ctx->dnn_module->execute_model)(ctx->model, &ctx->output, 1);
+    if (result != DNN_SUCCESS){
+        av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
+        return AVERROR(EIO);
+    }
+
+    outlink->w = ctx->output.width;
+    outlink->h = ctx->output.height;
+
+    return 0;
+}
+
+static int filter_frame(AVFilterLink *inlink, AVFrame *in)
+{
+    AVFilterContext *context  = inlink->dst;
+    AVFilterLink *outlink = context->outputs[0];
+    DnnRgbProcessingContext *ctx = context->priv;
+    DNNReturnType dnn_result;
+    AVFrame *out;
+
+    copy_from_frame_to_dnn(&ctx->input, in);
+
+    dnn_result = (ctx->dnn_module->execute_model)(ctx->model, &ctx->output, 1);
+    if (dnn_result != DNN_SUCCESS){
+        av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
+        av_frame_free(&in);
+        return AVERROR(EIO);
+    }
+    av_assert0(ctx->output.channels == 3);
+
+    out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
+    if (!out) {
+        av_log(ctx, AV_LOG_ERROR, "could not allocate memory for output frame\n");
+        av_frame_free(&in);
+        return AVERROR(ENOMEM);
+    }
+
+    av_frame_copy_props(out, in);
+    copy_from_dnn_to_frame(out, &ctx->output);
+    av_frame_free(&in);
+    return ff_filter_frame(outlink, out);
+}
+
+static av_cold void uninit(AVFilterContext *ctx)
+{
+    DnnRgbProcessingContext *context = ctx->priv;
+
+    if (context->dnn_module)
+        (context->dnn_module->free_model)(&context->model);
+
+    av_freep(&context->dnn_module);
+}
+
+static const AVFilterPad dnn_rgb_processing_inputs[] = {
+    {
+        .name         = "default",
+        .type         = AVMEDIA_TYPE_VIDEO,
+        .config_props = config_input,
+        .filter_frame = filter_frame,
+    },
+    { NULL }
+};
+
+static const AVFilterPad dnn_rgb_processing_outputs[] = {
+    {
+        .name = "default",
+        .type = AVMEDIA_TYPE_VIDEO,
+        .config_props  = config_output,
+    },
+    { NULL }
+};
+
+AVFilter ff_vf_dnn_rgb_processing = {
+    .name          = "dnn_rgb_processing",
+    .description   = NULL_IF_CONFIG_SMALL("Apply DNN RGB-based processing filter to the input."),
+    .priv_size     = sizeof(DnnRgbProcessingContext),
+    .init          = init,
+    .uninit        = uninit,
+    .query_formats = query_formats,
+    .inputs        = dnn_rgb_processing_inputs,
+    .outputs       = dnn_rgb_processing_outputs,
+    .priv_class    = &dnn_rgb_processing_class,
+    .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
+};
-- 
2.7.4



More information about the ffmpeg-devel mailing list