[FFmpeg-devel] [PATCH] avfilter: add v360_vulkan filter

Paul B Mahol onemda at gmail.com
Wed Jun 24 23:16:36 EEST 2020


Signed-off-by: Paul B Mahol <onemda at gmail.com>
---
Please test it and reports benchmark results on non toyish GPUs.
---
 configure                    |   1 +
 libavfilter/Makefile         |   1 +
 libavfilter/allfilters.c     |   1 +
 libavfilter/vf_v360_vulkan.c | 668 +++++++++++++++++++++++++++++++++++
 4 files changed, 671 insertions(+)
 create mode 100644 libavfilter/vf_v360_vulkan.c

diff --git a/configure b/configure
index 7495f35faa..2a3ac563db 100755
--- a/configure
+++ b/configure
@@ -3622,6 +3622,7 @@ transpose_opencl_filter_deps="opencl"
 transpose_vaapi_filter_deps="vaapi VAProcPipelineCaps_rotation_flags"
 unsharp_opencl_filter_deps="opencl"
 uspp_filter_deps="gpl avcodec"
+v360_vulkan_filter_deps="vulkan libglslang"
 vaguedenoiser_filter_deps="gpl"
 vidstabdetect_filter_deps="libvidstab"
 vidstabtransform_filter_deps="libvidstab"
diff --git a/libavfilter/Makefile b/libavfilter/Makefile
index 191826a622..6440794bcf 100644
--- a/libavfilter/Makefile
+++ b/libavfilter/Makefile
@@ -441,6 +441,7 @@ OBJS-$(CONFIG_UNSHARP_OPENCL_FILTER)         += vf_unsharp_opencl.o opencl.o \
 OBJS-$(CONFIG_UNTILE_FILTER)                 += vf_untile.o
 OBJS-$(CONFIG_USPP_FILTER)                   += vf_uspp.o
 OBJS-$(CONFIG_V360_FILTER)                   += vf_v360.o
+OBJS-$(CONFIG_V360_VULKAN_FILTER)            += vf_v360_vulkan.o vulkan.o
 OBJS-$(CONFIG_VAGUEDENOISER_FILTER)          += vf_vaguedenoiser.o
 OBJS-$(CONFIG_VECTORSCOPE_FILTER)            += vf_vectorscope.o
 OBJS-$(CONFIG_VFLIP_FILTER)                  += vf_vflip.o
diff --git a/libavfilter/allfilters.c b/libavfilter/allfilters.c
index de5884529c..65669c4422 100644
--- a/libavfilter/allfilters.c
+++ b/libavfilter/allfilters.c
@@ -420,6 +420,7 @@ extern AVFilter ff_vf_unsharp_opencl;
 extern AVFilter ff_vf_untile;
 extern AVFilter ff_vf_uspp;
 extern AVFilter ff_vf_v360;
+extern AVFilter ff_vf_v360_vulkan;
 extern AVFilter ff_vf_vaguedenoiser;
 extern AVFilter ff_vf_vectorscope;
 extern AVFilter ff_vf_vflip;
diff --git a/libavfilter/vf_v360_vulkan.c b/libavfilter/vf_v360_vulkan.c
new file mode 100644
index 0000000000..7db200f1c6
--- /dev/null
+++ b/libavfilter/vf_v360_vulkan.c
@@ -0,0 +1,668 @@
+/*
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "libavutil/random_seed.h"
+#include "libavutil/opt.h"
+#include "vulkan.h"
+#include "internal.h"
+
+enum RotationOrder {
+    YAW,
+    PITCH,
+    ROLL,
+    NB_RORDERS,
+};
+
+enum Projections {
+    EQUIRECTANGULAR,
+    CUBEMAP_3_2,
+    CUBEMAP_6_1,
+    EQUIANGULAR,
+    FLAT,
+    DUAL_FISHEYE,
+    BARREL,
+    CUBEMAP_1_6,
+    STEREOGRAPHIC,
+    MERCATOR,
+    BALL,
+    HAMMER,
+    SINUSOIDAL,
+    FISHEYE,
+    PANNINI,
+    CYLINDRICAL,
+    PERSPECTIVE,
+    TETRAHEDRON,
+    BARREL_SPLIT,
+    TSPYRAMID,
+    HEQUIRECTANGULAR,
+    NB_PROJECTIONS,
+};
+
+#define CGROUPS (int [3]){ 32, 32, 1 }
+
+typedef struct V360VulkanContext {
+    VulkanFilterContext vkctx;
+
+    int initialized;
+    FFVkExecContext *exec;
+    VulkanPipeline *pl;
+
+    /* Shader updators, must be in the main filter struct */
+    VkDescriptorImageInfo input_images[3];
+    VkDescriptorImageInfo output_images[3];
+
+    int   planewidth[4], planeheight[4];
+    int   inplanewidth[4], inplaneheight[4];
+    int   in, out;
+    int   width, height;
+    float h_fov, v_fov;
+    float ih_fov, iv_fov;
+    float yaw, pitch, roll;
+    char *rorder;
+    int rotation_order[3];
+
+    /* Push constants / options */
+    struct {
+        float flat_range[2];
+        float iflat_range[2];
+        float rot_mat[4][4];
+    } opts;
+} V360VulkanContext;
+
+static const char flat_to_xyz[] = {
+    C(0, void out_transform(out vec3 v, in ivec2 out_size, in ivec2 pos)       )
+    C(0, {                                                                     )
+    C(1,     vec2 fpos = vec2(pos) + vec2(0.5f, 0.5f);                         )
+    C(1,     vec2 p = ((fpos / vec2(out_size)) - 0.5f)*2.0f;                   )
+    C(1,     v = vec3(p[0], p[1], 1.f) * vec3(flat_range, 1.f);                )
+    C(1,     v = normalize(v);                                                 )
+    C(0, }                                                                     )
+};
+
+static const char xyz_to_flat[] = {
+    C(0, void in_transform(int idx, in vec3 v, in ivec2 pos, in ivec2 in_size) )
+    C(0, {                                                                     )
+    C(1,     const float r = tan(acos(v[2]));                                  )
+    C(1,     const float rr = abs(r) < 1e+6f ? r : length(in_size);            )
+    C(1,     const float h = length(vec2(v[0], v[1]));                         )
+    C(1,     const float c = h <= 1e-6f ? 1.f : rr / h;                        )
+    C(1,     vec2 p = vec2(v[0], v[1]) / iflat_range * c;                      )
+    C(1,     p = IS_WITHIN(abs(p), vec2(1.f)) ? (p/2.0f)+0.5f:vec2(0.f);       )
+    C(1,     p = v[2] >= 0.f ? p : vec2(0.f);                                  )
+    C(1,     vec4 res = texture(input_img[idx], p);                            )
+    C(1,     imageStore(output_img[idx], pos, res);                            )
+    C(0, }                                                                     )
+};
+
+static const char equirect_to_xyz[] = {
+    C(0, void out_transform(out vec3 v, in ivec2 out_size, in ivec2 pos)       )
+    C(0, {                                                                     )
+    C(1,     vec2 fpos = 2.f * vec2(pos) + 0.5f;                               )
+    C(1,     vec2 p = fpos / vec2(out_size) - 1.f;                             )
+    C(1,     p = vec2(p[0] * PI, p[1] * PI_2);                                 )
+    C(1,     v = vec3(cos(p[1]) * sin(p[0]), sin(p[1]), cos(p[1])*cos(p[0]));  )
+    C(0, }                                                                     )
+};
+
+static const char xyz_to_equirect[] = {
+    C(0, void in_transform(int idx, in vec3 v, in ivec2 pos, in ivec2 in_size) )
+    C(0, {                                                                     )
+    C(1,     vec2 p = vec2(atan(v[0], v[2]) / PI, asin(v[1]) / PI_2);          )
+    C(1,     vec4 res = texture(input_img[idx], (p/2.0f) + 0.5f);              )
+    C(1,     imageStore(output_img[idx], pos, res);                            )
+    C(0, }                                                                     )
+};
+
+static const char stereographic_to_xyz[] = {
+    C(0, void out_transform(out vec3 v, in ivec2 out_size, in ivec2 pos)       )
+    C(0, {                                                                     )
+    C(1,     vec2 fpos = vec2(pos) + vec2(0.5f, 0.5f);                         )
+    C(1,     vec2 p = (fpos / vec2(out_size) - 0.5f) * 2.0f * flat_range;      )
+    C(1,     const float r = length(p);                                        )
+    C(1,     const float theta = atan(r) * 2.0f;                               )
+    C(1,     v = vec3(p[0] / r*sin(theta), p[1] / r*sin(theta), cos(theta));   )
+    C(1,     v = normalize(v);                                                 )
+    C(0, }                                                                     )
+};
+
+static const char xyz_to_stereographic[] = {
+    C(0, void in_transform(int idx, in vec3 v, in ivec2 pos, in ivec2 in_size) )
+    C(0, {                                                                     )
+    C(1,     const float theta = acos(v[2]);                                   )
+    C(1,     const float r = tan(theta * 0.5f);                                )
+    C(1,     const vec2 c = (r / length(vec2(v[0], v[1]))) / iflat_range;      )
+    C(1,     vec2 p = vec2(v[0], v[1]) * c;                                    )
+    C(1,     p = IS_WITHIN(abs(p), vec2(1.f)) ? (p/2.0f)+0.5f:vec2(0.f);       )
+    C(1,     vec4 res = texture(input_img[idx], p);                            )
+    C(1,     imageStore(output_img[idx], pos, res);                            )
+    C(0, }                                                                     )
+};
+
+static const char fisheye_to_xyz[] = {
+    C(0, void out_transform(out vec3 v, in ivec2 out_size, in ivec2 pos)       )
+    C(0, {                                                                     )
+    C(1,     vec2 fpos = vec2(pos) + vec2(0.5f, 0.5f);                         )
+    C(1,     vec2 p = (fpos / vec2(out_size) - 0.5f) * 2.0f * flat_range;      )
+    C(1,     const float r = length(p);                                        )
+    C(1,     const float phi = atan(p[1], p[0]);                               )
+    C(1,     const float theta = (1.f - r) * PI_2;                             )
+    C(1,     v = vec3(cos(theta)*cos(phi), cos(theta)*sin(phi), sin(theta));   )
+    C(1,     v = normalize(v);                                                 )
+    C(0, }                                                                     )
+};
+
+static const char xyz_to_fisheye[] = {
+    C(0, void in_transform(int idx, in vec3 v, in ivec2 pos, in ivec2 in_size) )
+    C(0, {                                                                     )
+    C(1,     const float h = length(vec2(v[0], v[1]));                         )
+    C(1,     const float lh = h > 0.f ? h / 2.f : 1.f;                         )
+    C(1,     const float phi = atan(h, v[2]) / PI;                             )
+    C(1,     vec2 p = vec2(v[0], v[1]) * phi / lh / iflat_range;               )
+    C(1,     p = (length(p) <= 1.f) ? (p/2.0f)+0.5f:vec2(0.f);                 )
+    C(1,     vec4 res = texture(input_img[idx], p);                            )
+    C(1,     imageStore(output_img[idx], pos, res);                            )
+    C(0, }                                                                     )
+};
+
+static const char dfisheye_to_xyz[] = {
+    C(0, void out_transform(out vec3 v, in ivec2 out_size, in ivec2 pos)       )
+    C(0, {                                                                     )
+    C(1,     const float m = pos[0] >= out_size[0] / 2 ? 1.f : -1.f;           )
+    C(1,     vec2 npos = m == 1.f ? vec2(out_size[0] / 2, 0.f) : vec2(0.f);    )
+    C(1,     vec2 fpos = vec2(pos) - npos + vec2(0.5f, 0.5f);                  )
+    C(1,     vec2 osize = vec2(out_size) * vec2(0.5f, 1.f);                    )
+    C(1,     vec2 p = (fpos / osize - 0.5f) * 2.0f * flat_range;               )
+    C(1,     const float h = length(p);                                        )
+    C(1,     const float lh = h > 0.f ? h : 1.f;                               )
+    C(1,     const float theta = m * PI_2 * (1.f - h);                         )
+    C(1,     p = p / lh;                                                       )
+    C(1,     v = vec3(cos(theta)*m*p[0], cos(theta)*p[1], sin(theta));         )
+    C(1,     v = normalize(v);                                                 )
+    C(0, }                                                                     )
+};
+
+static const char xyz_to_dfisheye[] = {
+    C(0, void in_transform(int idx, in vec3 v, in ivec2 pos, in ivec2 in_size) )
+    C(0, {                                                                     )
+    C(1,     const float h = length(vec2(v[0], v[1]));                         )
+    C(1,     const float lh = h > 0.f ? h : 1.f;                               )
+    C(1,     const float theta = acos(abs(v[2])) / PI;                         )
+    C(1,     vec2 p = (vec2(v[0], v[1]) * theta)/lh/iflat_range + 0.5f;        )
+    C(1,     p = p * vec2(0.5f, 1.f);                                          )
+    C(1,     p = v[2] >= 0.f ? vec2(p[0]+0.5f, p[1]) : vec2(0.5f-p[0], p[1]);  )
+    C(1,     vec4 res = texture(input_img[idx], p);                            )
+    C(1,     imageStore(output_img[idx], pos, res);                            )
+    C(0, }                                                                     )
+};
+
+static void multiply_matrix(float c[4][4], const float a[4][4], const float b[4][4])
+{
+    for (int i = 0; i < 3; i++) {
+        for (int j = 0; j < 3; j++) {
+            float sum = 0.f;
+
+            for (int k = 0; k < 3; k++)
+                sum += a[i][k] * b[k][j];
+
+            c[i][j] = sum;
+        }
+    }
+}
+
+static inline void calculate_rotation_matrix(float yaw, float pitch, float roll,
+                                             float rot_mat[4][4],
+                                             const int rotation_order[3])
+{
+    const float yaw_rad   = yaw   * M_PI / 180.f;
+    const float pitch_rad = pitch * M_PI / 180.f;
+    const float roll_rad  = roll  * M_PI / 180.f;
+
+    const float sin_yaw   = sinf(yaw_rad);
+    const float cos_yaw   = cosf(yaw_rad);
+    const float sin_pitch = sinf(pitch_rad);
+    const float cos_pitch = cosf(pitch_rad);
+    const float sin_roll  = sinf(roll_rad);
+    const float cos_roll  = cosf(roll_rad);
+
+    float m[3][4][4];
+    float temp[4][4];
+
+    m[0][0][0] =  cos_yaw;  m[0][0][1] = 0;          m[0][0][2] =  sin_yaw;
+    m[0][1][0] =  0;        m[0][1][1] = 1;          m[0][1][2] =  0;
+    m[0][2][0] = -sin_yaw;  m[0][2][1] = 0;          m[0][2][2] =  cos_yaw;
+
+    m[1][0][0] = 1;         m[1][0][1] = 0;          m[1][0][2] =  0;
+    m[1][1][0] = 0;         m[1][1][1] = cos_pitch;  m[1][1][2] = -sin_pitch;
+    m[1][2][0] = 0;         m[1][2][1] = sin_pitch;  m[1][2][2] =  cos_pitch;
+
+    m[2][0][0] = cos_roll;  m[2][0][1] = -sin_roll;  m[2][0][2] =  0;
+    m[2][1][0] = sin_roll;  m[2][1][1] =  cos_roll;  m[2][1][2] =  0;
+    m[2][2][0] = 0;         m[2][2][1] =  0;         m[2][2][2] =  1;
+
+    multiply_matrix(temp, m[rotation_order[0]], m[rotation_order[1]]);
+    multiply_matrix(rot_mat, temp, m[rotation_order[2]]);
+}
+
+static void set_dimensions(int *outw, int *outh, int w, int h, const AVPixFmtDescriptor *desc)
+{
+    outw[1] = outw[2] = FF_CEIL_RSHIFT(w, desc->log2_chroma_w);
+    outw[0] = outw[3] = w;
+    outh[1] = outh[2] = FF_CEIL_RSHIFT(h, desc->log2_chroma_h);
+    outh[0] = outh[3] = h;
+}
+
+static av_cold int init_filter(AVFilterContext *ctx, AVFrame *in)
+{
+    AVFilterLink *outlink = ctx->outputs[0];
+    V360VulkanContext *s = ctx->priv;
+    int err;
+
+    /* Create a sampler */
+    VkSampler *sampler = ff_vk_init_sampler(ctx, 0, VK_FILTER_LINEAR);
+    if (!sampler)
+        return AVERROR_EXTERNAL;
+
+    s->vkctx.queue_family_idx = s->vkctx.hwctx->queue_family_comp_index;
+    s->vkctx.queue_count = GET_QUEUE_COUNT(s->vkctx.hwctx, 0, 1, 0);
+    s->vkctx.cur_queue_idx = av_get_random_seed() % s->vkctx.queue_count;
+
+    s->pl = ff_vk_create_pipeline(ctx);
+    if (!s->pl)
+        return AVERROR(ENOMEM);
+
+    switch (s->out) {
+    case FLAT:
+        s->opts.flat_range[0] = tanf(0.5f * s->h_fov * M_PI / 180.f);
+        s->opts.flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f);
+        break;
+    case STEREOGRAPHIC:
+        s->opts.flat_range[0] = tanf(FFMIN(s->h_fov, 359.f) * M_PI / 720.f);
+        s->opts.flat_range[1] = tanf(FFMIN(s->v_fov, 359.f) * M_PI / 720.f);
+        break;
+    case DUAL_FISHEYE:
+    case FISHEYE:
+        s->opts.flat_range[0] = s->h_fov / 180.f;
+        s->opts.flat_range[1] = s->v_fov / 180.f;
+        break;
+    }
+
+    switch (s->in) {
+    case FLAT:
+        s->opts.iflat_range[0] = tanf(0.5f * s->ih_fov * M_PI / 180.f);
+        s->opts.iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f);
+        break;
+    case STEREOGRAPHIC:
+        s->opts.iflat_range[0] = tanf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f);
+        s->opts.iflat_range[1] = tanf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f);
+        break;
+    case DUAL_FISHEYE:
+    case FISHEYE:
+        s->opts.iflat_range[0] = s->ih_fov / 180.f;
+        s->opts.iflat_range[1] = s->iv_fov / 180.f;
+        break;
+    }
+
+    s->rotation_order[0] = YAW;
+    s->rotation_order[1] = PITCH;
+    s->rotation_order[2] = ROLL;
+
+    { /* Create the shader */
+        const int planes = av_pix_fmt_count_planes(s->vkctx.output_format);
+        const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(s->vkctx.output_format);
+
+        set_dimensions(s->inplanewidth, s->inplaneheight, in->width, in->height, desc);
+        set_dimensions(s->planewidth, s->planeheight, outlink->w, outlink->h, desc);
+        calculate_rotation_matrix(s->yaw, s->pitch, s->roll, s->opts.rot_mat, s->rotation_order);
+
+        VulkanDescriptorSetBinding desc_i[2] = {
+            {
+                .name       = "input_img",
+                .type       = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
+                .dimensions = 2,
+                .elems      = planes,
+                .stages     = VK_SHADER_STAGE_COMPUTE_BIT,
+                .updater    = s->input_images,
+                .samplers   = DUP_SAMPLER_ARRAY4(*sampler),
+            },
+            {
+                .name       = "output_img",
+                .type       = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
+                .mem_layout = ff_vk_shader_rep_fmt(s->vkctx.output_format),
+                .mem_quali  = "writeonly",
+                .dimensions = 2,
+                .elems      = planes,
+                .stages     = VK_SHADER_STAGE_COMPUTE_BIT,
+                .updater    = s->output_images,
+            },
+        };
+
+        SPIRVShader *shd = ff_vk_init_shader(ctx, s->pl, "v360_compute",
+                                             VK_SHADER_STAGE_COMPUTE_BIT);
+        if (!shd)
+            return AVERROR(ENOMEM);
+
+        ff_vk_set_compute_shader_sizes(ctx, shd, CGROUPS);
+
+        GLSLC(0, layout(push_constant, std430) uniform pushConstants {        );
+        GLSLC(1,    vec2 flat_range;                                          );
+        GLSLC(1,    vec2 iflat_range;                                         );
+        GLSLC(1,    mat4 rot_mat;                                             );
+        GLSLC(0, };                                                           );
+        GLSLC(0,                                                              );
+
+        ff_vk_add_push_constant(ctx, s->pl, 0, sizeof(s->opts),
+                                VK_SHADER_STAGE_COMPUTE_BIT);
+
+        RET(ff_vk_add_descriptor_set(ctx, s->pl, shd, desc_i, 2, 0)); /* set 0 */
+
+        GLSLF(0, #define PI (%f)                                         ,M_PI);
+        GLSLF(0, #define PI_2 (%f)                                     ,M_PI_2);
+        GLSLF(0, #define SQRT2 (%f)                                   ,M_SQRT2);
+        GLSLF(0, #define inplanewidth ivec4(%i, %i, %i, %i), s->inplanewidth[0],
+                                                             s->inplanewidth[1],
+                                                             s->inplanewidth[2],
+                                                             s->inplanewidth[3]);
+        GLSLF(0, #define inplaneheight ivec4(%i, %i, %i, %i), s->inplaneheight[0],
+                                                              s->inplaneheight[1],
+                                                              s->inplaneheight[2],
+                                                              s->inplaneheight[3]);
+
+        switch (s->out) {
+        case FLAT:
+            GLSLD(flat_to_xyz);
+            break;
+        case EQUIRECTANGULAR:
+            GLSLD(equirect_to_xyz);
+            break;
+        case STEREOGRAPHIC:
+            GLSLD(stereographic_to_xyz);
+            break;
+        case FISHEYE:
+            GLSLD(fisheye_to_xyz);
+            break;
+        case DUAL_FISHEYE:
+            GLSLD(dfisheye_to_xyz);
+            break;
+        }
+
+        switch (s->in) {
+        case FLAT:
+            GLSLD(xyz_to_flat);
+            break;
+        case EQUIRECTANGULAR:
+            GLSLD(xyz_to_equirect);
+            break;
+        case STEREOGRAPHIC:
+            GLSLD(xyz_to_stereographic);
+            break;
+        case FISHEYE:
+            GLSLD(xyz_to_fisheye);
+            break;
+        case DUAL_FISHEYE:
+            GLSLD(xyz_to_dfisheye);
+            break;
+        }
+
+        GLSLC(0, void main()                                                  );
+        GLSLC(0, {                                                            );
+        GLSLC(1,  ivec2 pos = ivec2(gl_GlobalInvocationID.xy);                );
+        GLSLC(1,  vec3 vector;                                                );
+        GLSLF(1,  int planes = %i;                                     ,planes);
+        GLSLC(1,  for (int i = 0; i < planes; i++) {                          );
+        GLSLC(2,      ivec2 out_size = imageSize(output_img[i]);              );
+        GLSLC(2,      ivec2 in_size = ivec2(inplanewidth[i],inplaneheight[i]););
+        GLSLC(2,      out_transform(vector, out_size, pos);                   );
+        GLSLC(2,      vector = normalize((rot_mat * vec4(vector, 1.f)).xyz);  );
+        GLSLC(2,      in_transform(i, vector, pos, in_size);                  );
+        GLSLC(1, }                                                            );
+        GLSLC(0, }                                                            );
+
+        RET(ff_vk_compile_shader(ctx, shd, "main"));
+    }
+
+    RET(ff_vk_init_pipeline_layout(ctx, s->pl));
+    RET(ff_vk_init_compute_pipeline(ctx, s->pl));
+
+    /* Execution context */
+    RET(ff_vk_create_exec_ctx(ctx, &s->exec));
+
+    s->initialized = 1;
+
+    return 0;
+
+fail:
+    return err;
+}
+
+static int process_frames(AVFilterContext *avctx, AVFrame *out_f, AVFrame *in_f)
+{
+    int err = 0;
+    VkCommandBuffer cmd_buf;
+    V360VulkanContext *s = avctx->priv;
+    AVVkFrame *in = (AVVkFrame *)in_f->data[0];
+    AVVkFrame *out = (AVVkFrame *)out_f->data[0];
+    int planes = av_pix_fmt_count_planes(s->vkctx.output_format);
+
+    /* Update descriptors and init the exec context */
+    ff_vk_start_exec_recording(avctx, s->exec);
+    cmd_buf = ff_vk_get_exec_buf(avctx, s->exec);
+
+    for (int i = 0; i < planes; i++) {
+        RET(ff_vk_create_imageview(avctx, s->exec, &s->input_images[i].imageView, in->img[i],
+                                   av_vkfmt_from_pixfmt(s->vkctx.input_format)[i],
+                                   ff_comp_identity_map));
+
+        RET(ff_vk_create_imageview(avctx, s->exec, &s->output_images[i].imageView, out->img[i],
+                                   av_vkfmt_from_pixfmt(s->vkctx.output_format)[i],
+                                   ff_comp_identity_map));
+
+        s->input_images[i].imageLayout  = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
+        s->output_images[i].imageLayout = VK_IMAGE_LAYOUT_GENERAL;
+    }
+
+    ff_vk_update_descriptor_set(avctx, s->pl, 0);
+
+    for (int i = 0; i < planes; i++) {
+        VkImageMemoryBarrier bar[2] = {
+            {
+                .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
+                .srcAccessMask = 0,
+                .dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
+                .oldLayout = in->layout[i],
+                .newLayout = s->input_images[i].imageLayout,
+                .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
+                .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
+                .image = in->img[i],
+                .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
+                .subresourceRange.levelCount = 1,
+                .subresourceRange.layerCount = 1,
+            },
+            {
+                .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
+                .srcAccessMask = 0,
+                .dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
+                .oldLayout = out->layout[i],
+                .newLayout = s->output_images[i].imageLayout,
+                .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
+                .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
+                .image = out->img[i],
+                .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
+                .subresourceRange.levelCount = 1,
+                .subresourceRange.layerCount = 1,
+            },
+        };
+
+        vkCmdPipelineBarrier(cmd_buf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
+                             VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0,
+                             0, NULL, 0, NULL, FF_ARRAY_ELEMS(bar), bar);
+
+        in->layout[i]  = bar[0].newLayout;
+        in->access[i]  = bar[0].dstAccessMask;
+
+        out->layout[i] = bar[1].newLayout;
+        out->access[i] = bar[1].dstAccessMask;
+    }
+
+    ff_vk_bind_pipeline_exec(avctx, s->exec, s->pl);
+
+    ff_vk_update_push_exec(avctx, s->exec, VK_SHADER_STAGE_COMPUTE_BIT,
+                           0, sizeof(s->opts), &s->opts);
+
+    vkCmdDispatch(cmd_buf,
+                  FFALIGN(s->vkctx.output_width,  CGROUPS[0])/CGROUPS[0],
+                  FFALIGN(s->vkctx.output_height, CGROUPS[1])/CGROUPS[1], 1);
+
+    ff_vk_add_exec_dep(avctx, s->exec, in_f, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT);
+    ff_vk_add_exec_dep(avctx, s->exec, out_f, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT);
+
+    err = ff_vk_submit_exec_queue(avctx, s->exec);
+    if (err)
+        return err;
+
+fail:
+    ff_vk_discard_exec_deps(avctx, s->exec);
+    return err;
+}
+
+static int v360_vulkan_filter_frame(AVFilterLink *link, AVFrame *in)
+{
+    int err;
+    AVFilterContext *ctx = link->dst;
+    V360VulkanContext *s = ctx->priv;
+    AVFilterLink *outlink = ctx->outputs[0];
+
+    AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
+    if (!out) {
+        err = AVERROR(ENOMEM);
+        goto fail;
+    }
+
+    if (!s->initialized)
+        RET(init_filter(ctx, in));
+
+    RET(process_frames(ctx, out, in));
+
+    err = av_frame_copy_props(out, in);
+    if (err < 0)
+        goto fail;
+
+    av_frame_free(&in);
+
+    return ff_filter_frame(outlink, out);
+
+fail:
+    av_frame_free(&in);
+    av_frame_free(&out);
+    return err;
+}
+
+static int v360_vulkan_config_output(AVFilterLink *outlink)
+{
+    AVFilterContext *avctx = outlink->src;
+    V360VulkanContext *s  = avctx->priv;
+    AVFilterLink *inlink   = avctx->inputs[0];
+    int err;
+
+    if (s->width > 0 && s->height > 0) {
+        s->vkctx.output_width  = s->width;
+        s->vkctx.output_height = s->height;
+    }
+
+    s->vkctx.output_format = s->vkctx.input_format;
+
+    err = ff_vk_filter_config_output(outlink);
+    if (err < 0)
+        return err;
+
+    outlink->sample_aspect_ratio = inlink->sample_aspect_ratio;
+
+    return 0;
+}
+
+static void v360_vulkan_uninit(AVFilterContext *avctx)
+{
+    V360VulkanContext *s = avctx->priv;
+
+    ff_vk_filter_uninit(avctx);
+
+    s->initialized = 0;
+}
+
+#define OFFSET(x) offsetof(V360VulkanContext, x)
+#define FLAGS (AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
+static const AVOption v360_vulkan_options[] = {
+    {     "input", "set input projection",              OFFSET(in), AV_OPT_TYPE_INT,    {.i64=EQUIRECTANGULAR}, 0,    NB_PROJECTIONS-1, FLAGS, "in" },
+    {         "e", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "in" },
+    {  "equirect", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "in" },
+    {      "flat", "regular video",                              0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "in" },
+    {  "dfisheye", "dual fisheye",                               0, AV_OPT_TYPE_CONST,  {.i64=DUAL_FISHEYE},    0,                   0, FLAGS, "in" },
+    {        "sg", "stereographic",                              0, AV_OPT_TYPE_CONST,  {.i64=STEREOGRAPHIC},   0,                   0, FLAGS, "in" },
+    {   "fisheye", "fisheye",                                    0, AV_OPT_TYPE_CONST,  {.i64=FISHEYE}      ,   0,                   0, FLAGS, "in" },
+    {    "output", "set output projection",            OFFSET(out), AV_OPT_TYPE_INT,    {.i64=FLAT},            0,    NB_PROJECTIONS-1, FLAGS, "out" },
+    {         "e", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "out" },
+    {  "equirect", "equirectangular",                            0, AV_OPT_TYPE_CONST,  {.i64=EQUIRECTANGULAR}, 0,                   0, FLAGS, "out" },
+    {      "flat", "regular video",                              0, AV_OPT_TYPE_CONST,  {.i64=FLAT},            0,                   0, FLAGS, "out" },
+    {  "dfisheye", "dual fisheye",                               0, AV_OPT_TYPE_CONST,  {.i64=DUAL_FISHEYE},    0,                   0, FLAGS, "out" },
+    {        "sg", "stereographic",                              0, AV_OPT_TYPE_CONST,  {.i64=STEREOGRAPHIC},   0,                   0, FLAGS, "out" },
+    {   "fisheye", "fisheye",                                    0, AV_OPT_TYPE_CONST,  {.i64=FISHEYE}      ,   0,                   0, FLAGS, "out" },
+    { "w", "output width",  OFFSET(width),  AV_OPT_TYPE_INT,    {.i64=0},  0, INT16_MAX, FLAGS, "w"},
+    { "h", "output height", OFFSET(height), AV_OPT_TYPE_INT,    {.i64=0},  0, INT16_MAX, FLAGS, "h"},
+    {       "yaw", "yaw rotation",                     OFFSET(yaw), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},        -180.f,               180.f, FLAGS, "yaw"},
+    {     "pitch", "pitch rotation",                 OFFSET(pitch), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},        -180.f,               180.f, FLAGS, "pitch"},
+    {      "roll", "roll rotation",                   OFFSET(roll), AV_OPT_TYPE_FLOAT,  {.dbl=0.f},        -180.f,               180.f, FLAGS, "roll"},
+    {    "rorder", "rotation order",                OFFSET(rorder), AV_OPT_TYPE_STRING, {.str="ypr"},           0,                   0, FLAGS, "rorder"},
+    { "h_fov", "set output horizontal FOV angle", OFFSET(h_fov), AV_OPT_TYPE_FLOAT, {.dbl = 90.0f}, 0.00001f, 360.0f, .flags = FLAGS },
+    { "v_fov", "set output vertical FOV angle",   OFFSET(v_fov), AV_OPT_TYPE_FLOAT, {.dbl = 45.0f}, 0.00001f, 360.0f, .flags = FLAGS },
+    { "ih_fov", "set input horizontal FOV angle", OFFSET(ih_fov), AV_OPT_TYPE_FLOAT, {.dbl = 90.0f}, 0.00001f, 360.0f, .flags = FLAGS },
+    { "iv_fov", "set input vertical FOV angle",   OFFSET(iv_fov), AV_OPT_TYPE_FLOAT, {.dbl = 45.0f}, 0.00001f, 360.0f, .flags = FLAGS },
+    { NULL },
+};
+
+AVFILTER_DEFINE_CLASS(v360_vulkan);
+
+static const AVFilterPad v360_vulkan_inputs[] = {
+    {
+        .name         = "default",
+        .type         = AVMEDIA_TYPE_VIDEO,
+        .filter_frame = &v360_vulkan_filter_frame,
+        .config_props = &ff_vk_filter_config_input,
+    },
+    { NULL }
+};
+
+static const AVFilterPad v360_vulkan_outputs[] = {
+    {
+        .name = "default",
+        .type = AVMEDIA_TYPE_VIDEO,
+        .config_props = &v360_vulkan_config_output,
+    },
+    { NULL }
+};
+
+AVFilter ff_vf_v360_vulkan = {
+    .name           = "v360_vulkan",
+    .description    = NULL_IF_CONFIG_SMALL("Convert 360 projection of video."),
+    .priv_size      = sizeof(V360VulkanContext),
+    .init           = &ff_vk_filter_init,
+    .uninit         = &v360_vulkan_uninit,
+    .query_formats  = &ff_vk_filter_query_formats,
+    .inputs         = v360_vulkan_inputs,
+    .outputs        = v360_vulkan_outputs,
+    .priv_class     = &v360_vulkan_class,
+    .flags_internal = FF_FILTER_FLAG_HWFRAME_AWARE,
+};
-- 
2.17.1



More information about the ffmpeg-devel mailing list