[FFmpeg-devel] [PATCH FFmpeg 9/15] doc: Filters.texi updated classify
m.kaindl0208 at gmail.com
m.kaindl0208 at gmail.com
Sat Mar 8 17:01:07 EET 2025
Try the new filters using my Github Repo https://github.com/MaximilianKaindl/DeepFFMPEGVideoClassification.
Any Feedback is appreciated!
Signed-off-by: MaximilianKaindl <m.kaindl0208 at gmail.com>
---
doc/filters.texi | 106 +++++++++++++++++++++++++++++++++--------------
1 file changed, 76 insertions(+), 30 deletions(-)
diff --git a/doc/filters.texi b/doc/filters.texi
index 0ba7d3035f..b6cccbacb6 100644
--- a/doc/filters.texi
+++ b/doc/filters.texi
@@ -11971,43 +11971,89 @@ ffmpeg -i INPUT -f lavfi -i nullsrc=hd720,geq='r=128+80*(sin(sqrt((X-W/2)*(X-W/2
@end itemize
@section dnn_classify
+Analyze media (video frames or audio) using deep neural networks to apply classifications based on the content.
+This filter supports three classification modes:
-Do classification with deep neural networks based on bounding boxes.
+ at itemize @bullet
+ at item Standard image classification (OpenVINO backend)
+ at item CLIP (Contrastive Language-Image Pre-training) classification (Torch backend)
+ at item CLAP (Contrastive Language-Audio Pre-training) classification (Torch backend)
+ at end itemize
The filter accepts the following options:
-
@table @option
@item dnn_backend
-Specify which DNN backend to use for model loading and execution. This option accepts
-only openvino now, tensorflow backends will be added.
-
- at item model
-Set path to model file specifying network architecture and its parameters.
-Note that different backends use different file formats.
-
- at item input
-Set the input name of the dnn network.
-
- at item output
-Set the output name of the dnn network.
-
+Specify which DNN backend to use for model loading and execution. Currently supports:
+ at table @samp
+ at item openvino
+Use OpenVINO backend (standard image classification only).
+ at item torch
+Use LibTorch backend (supports CLIP for images and CLAP for audio).
+ at end table
@item confidence
-Set the confidence threshold (default: 0.5).
-
+Set the confidence threshold (default: 0.5). Classifications with confidence below this value will be filtered out.
@item labels
-Set path to label file specifying the mapping between label id and name.
-Each label name is written in one line, tailing spaces and empty lines are skipped.
-The first line is the name of label id 0,
-and the second line is the name of label id 1, etc.
-The label id is considered as name if the label file is not provided.
-
- at item backend_configs
-Set the configs to be passed into backend
-
-For tensorflow backend, you can set its configs with @option{sess_config} options,
-please use tools/python/tf_sess_config.py to get the configs for your system.
-
- at end table
+Set path to a label file specifying classification labels. This is required for standard classification and can be used for CLIP/CLAP classification.
+Each label is written on a separate line in the file. Trailing spaces and empty lines are skipped.
+ at item categories
+Path to a categories file for hierarchical classification (CLIP/CLAP only). This allows classification to be organized into multiple category units with individual categories containing related labels.
+ at item tokenizer
+Path to the text tokenizer.json file (CLIP/CLAP only). Required for text embedding generation.
+ at item target
+Specify which objects to classify. When omitted, the entire frame is classified. When specified, only bounding boxes with detection labels matching this value are classified.
+ at item is_audio
+Enable audio processing mode for CLAP models (default: 0). Set to 1 to process audio input instead of video frames.
+ at item logit_scale
+Logit scale for similarity calculation in CLIP/CLAP (default: 4.6052 for CLIP, 33.37 for CLAP). Values below 0 use the default.
+ at item temperature
+Softmax temperature for CLIP/CLAP models (default: 1.0). Lower values make the output more peaked, higher values make it smoother.
+ at item forward_order
+Order of forward output for CLIP/CLAP: 0 for media-text order, 1 for text-media order (default depends on model type).
+ at item normalize
+Whether to normalize the input tensor for CLIP/CLAP (default depends on model type). Some scripted models already do this in the forward, so this is not necessary in some cases.
+ at item input_res
+Expected input resolution for video processing models (default: automatically detected).
+ at item sample_rate
+Expected sample rate for audio processing models (default: 44100).
+ at item sample_duration
+Expected sample duration in seconds for audio processing models (default: 7).
+ at item token_dimension
+Dimension of token vector for text embeddings (default: 77).
+ at item optimize
+Enable graph executor optimization (0: disabled, 1: enabled).
+ at end table
+ at subsection Category Files Format
+For CLIP/CLAP models, a hierarchical categories file can be provided with the following format:
+ at example
+[RecordingSystem]
+(Professional)
+a photo with high level of detail
+a professionally recorded sound
+(HomeRecording)
+a photo with low level of detail
+an amateur recording
+[ContentType]
+(Nature)
+trees
+mountains
+birds singing
+(Urban)
+buildings
+street noise
+traffic sounds
+ at end example
+Each unit enclosed in square brackets [] creates a classification group. Within each group, categories are defined with parentheses () and the labels under each category are used to classify the input.
+ at subsection Examples
+ at example
+Classify video using OpenVINO
+ffmpeg -i input.mp4 -vf "dnn_classify=dnn_backend=openvino:model=model.xml:labels=labels.txt" output.mp4
+Classify video using CLIP
+ffmpeg -i input.mp4 -vf "dnn_classify=dnn_backend=torch:model=clip_model.pt:categories=categories.txt:tokenizer=tokenizer.json" output.mp4
+Classify only person objects in a video
+ffmpeg -i input.mp4 -vf "dnn_detect=model=detection.xml:input=data:output=detection_out:confidence=0.5,dnn_classify=model=clip_model.pt:dnn_backend=torch:tokenizer=tokenizer.json:labels=labels.txt:target=person" output.mp4
+Classify audio using CLAP
+ffmpeg -i input.mp3 -af "dnn_classify=dnn_backend=torch:model=clap_model.pt:categories=audio_categories.txt:tokenizer=tokenizer.json:is_audio=1:sample_rate=44100:sample_duration=7" output.mp3
+ at end example
@section dnn_detect
--
2.34.1
More information about the ffmpeg-devel
mailing list