FEV1 Video Codec Specification

by Michael Niedermayer michaelni@gmx.at

Contents
1 Introduction 3
2 Notation and Conventions 3
2.1 Definitions oL e 3
2.2 Conventions e e 3
2.2.1 Arithmetic operators L 3
2.2.2 Assignment operators e 4
2.2.3 Comparison operators i i 4
2.2.4 Mathematical functions Lo 4
2.2.5 Order of operation precedence o 4
226 Range e 5
227 NumBytes. o L e e 5
2.2.8 Bitstream functions 5
3 General Description 5
3.1 Bordero e 5
3.2 Median predictor L e 5
3.3 Context o e e e e 6
3.4 Quantization e 6
3.5 Colorspace 6
3.5.1 YCDBCr .« . oo e 7
3.5.2 JPEG2000-RCT e 7
3.6 Coding of the sample difference L 8
3.6.1 Range coding mode 8
3.6.2 Huffman coding mode 11
4 Bitstream 12
4.1 Configuration Record L 13
4.1.1 reserved_for_futureuse Lo 13
4.1.2 configuration_record_crc_parity L L 13
4.1.3 Mapping FFV1 into Containers 13
4.2 Frame e e 14
4.3 Slice e 14
4.4 Slice Header e 15
4.4.1 slicex . . . Lo 15
4.4.2 sliceyo 15
4.4.3 sliceowidth L e 15
4.4.4 slicecheighto 15
4.4.5 quant_tableiindex_count L L L L 15
4.4.6 quant_tabledindex Lo 15
4.4.7 picturestructure e e 15
4.4.8 SATMUIML . . . v v v v e e e e e e e e e e e e e e e e e e e 16

mailto:michaelni@gmx.at

4.4.9 sar-den e e 16

4.4.10 reset_contexts L e e e e e 16

4.4.11 slicecodingmode Lo 16

4.5 Slice Content L e 16
4.5.1 primary_color_count Lo e 17

4.5.2 plane_pixel height L 17

4.5.3 slice_pixel_heighto 17

4.5.4 slicepixelly . . . oL L e 17

4.6 Lineo e 17
4.6.1 planepixel.width Lo 17

4.6.2 slicepixel.width L 17

4.6.3 slicepixelx L 17

4.7 Slice Footer e e e e 18
4.7.1 slicessize e 18

4.77.2 errorstatus L L L e 18

4.7.3 slice_cre_parity L e 18

4.8 Parameters e e e e 18
4.8.1 VErSiON e e e e 19

4.8.2 miCro_version e e e 19

4.83 codertype. e 20

4.8.4 state_transition_delta L Lo 20

4.8.5 colorspacetype e 20

4.8.6 chroma.planes L e 20

4.8.7 Dbits_perraw_sample 21

4.8.8 h.chromasubsample 21

4.8.9 v_chromasubsample L 21

4.8.10 alpha_plane L e 21

4.8.11 num_h_slices. e e e 21

4.8.12 num_vslices e e 21

4.8.13 quant_table.count L 21

4.8.14 statesccoded L e 21

4.8.15 initialstate_delta Lo 22

4816 €C . . . o 22

4.8.17 intra e e 22

4.9 Quantization Tables L 22
4.9.1 quant_tables. L 23

4.9.2 context_count Lo e 23

4.9.3 Restrictions e 23

5 Security Considerations 23
6 Appendixes 24
6.1 Decoder implementation suggestions oL oL Lo 24
6.1.1 Multi-threading support and independence of slices 24

7 Changelog 25
8 ToDo 25
9 Copyright 25
10 Bibliography 25
10.1 References L 25

1 Introduction

The FFV1 video codec is a simple and efficient lossless intra-frame only codec.

The latest version of this document is available at https://raw.github.com/FFmpeg/FFV1/master/ffvl.md

This document assumes familiarity with mathematical and coding concepts such as Range coding [range-

coding] and YCbCr colorspaces YCbCr.

2 Notation and Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described

in [RFC2119].

2.1 Definitions

ESC:

MSB:

RCT:

VLC:
RGB:

YCbCr:

TBA:

An ESCape symbol to indicate that the symbol to be stored is too large for normal
storage and that an alternate storage method.

Most Significant Bit, the bit that can cause the largest change in magnitude of the
symbol.

Reversible Color Transform, a near linear, exactly reversible integer transform that
converts between RGB and YCbCr representations of a sample.

Variable Length Code.

A reference to the method of storing the value of a sample by using three numeric
values that represent Red, Green, and Blue.

A reference to the method of storing the value of a sample by using three numeric
values that represent the luminance of the sample (Y) and the chrominance of the
sample (Cb and Cr).

To Be Announced. Used in reference to the development of future iterations of the
FFV1 specification.

2.2 Conventions

Note: the operators and the order of precedence are the same as used in the C programming language

[IS0O.9899.1990].

2.2.1 Arithmetic operators

means a plus b.

means a minus b.

means negation of a.

means a multiplied by b.

means a divided by b.

means bit-wise “and” of a and b.
means bit-wise “or” of a and b.
means arithmetic right shift of two’s complement integer representation of a by b
binary digits.

means arithmetic left shift of two’s complement integer representation of a by b
binary digits.

https://raw.github.com/FFmpeg/FFV1/master/ffv1.md

2.2.2 Assignment operators

a=>bo
at++
a-——
a+=b
a-=>
a *=»>

means a is assigned b.

is equivalent to a is assigned a + 1.
is equivalent to a is assigned a - 1.

is equivalent to a is assigned a + b.
is equivalent to a is assigned a - b.

is equivalent to a is assigned a * b.

2.2.3 Comparison operators

”/I}/\\I{\/
oo 5% 57

Q"&'WWQ’WWWD’W
-~ — |

& |
o’ o

. C

means a is greater than b.

means a is greater than or equal to b.
means a is less than b.

means a is less than or equal b.

means a is equal to b.

means a is not equal to b.

means Boolean logical “and” of a and b.
means Boolean logical “or” of a and b.
means Boolean logical “not”.

if a is true, then b, otherwise c.

2.2.4 Mathematical functions

abs(a)
log2(a)
min(a,b)

la]

[a]

the largest integer less than or equal to a

the smallest integer greater than or equal to a

the absolute value of a, i.e. abs(a) = sign(a)*a
the base-two logarithm of a
the smallest of two values a and b

2.2.5 Order of operation precedence

When order of precedence is not indicated explicitly by use of parentheses, operations are evaluated in the
following order (from top to bottom, operations of same precedence being evaluated from left to right). This
order of operations is based on the order of operations used in Standard C.

at+, a--
la, —a

a*xb,a/b,al%b

a+b, a-b
a<<b, a>hb
a

a==>b, al=b
a&b

alb

< b, a<=b, a>b, a>o>»

&& b
Il b
?7b:c
=b, a+=b, a -=>b, a *x=0>D

PP P

2.2.6 Range

a...b means any value starting from a to b, inclusive.

2.2.7 NumBytes

NumBytes is a non-negative integer that expresses the size in 8-bit octets of particular FFV1 components
such as the Configuration Record and Frame. FFV1 relies on its container to store the NumBytes values,
see the section on the Mapping FFV1 into Containers.

2.2.8 Bitstream functions

2.2.8.1 remaining_ bits_in_bitstream

remaining bits_in bitstream() means the count of remaining bits after the current position in that
bitstream component. It is computed from the NumBytes value multiplied by 8 minus the count of bits of
that component already read by the bitstream parser.

2.2.8.2 byte_aligned

byte_aligned() is true if remaining bits_in bitstream(NumBytes) is a multiple of 8, otherwise false.

3 General Description

Samples within a plane are coded in raster scan order (left->right, top->bottom). Each sample is predicted
by the median predictor from samples in the same plane and the difference is stored see Coding of the Sample
Difference.

3.1 Border

For the purpose of the predictor and context, samples above the coded slice are assumed to be 0; samples
to the right of the coded slice are identical to the closest left sample; samples to the left of the coded slice
are identical to the top right sample (if there is one), otherwise 0.

0 0 0 0 0
0 0 0 0 0
0 0 a b

0 a d e
0 d f g h

o

[cENe]

3.2 Median predictor

median(left, top, left + top - diag)

left, top, diag are the left, top and left-top samples
Note, this is also used in [ISO.14495-1.1999] and [HuffYUV].

Exception for the media predictor: if colorspace_type == 0 && bits_per_raw_sample == 16 && (coder_type
== 1 || coder_type == 2), the following media predictor MUST be used:

median(left16s, top16s, left16s + topl6s - diagl6s)

with: - left16s = left >= 32768 7 (left - 65536) : left - topl6s = top >= 32768 ? (top - 65536) : top -
diagl6s = diag >= 32768 7 (diag - 65536) : diag

Background: a two’s complement signed 16-bit signed integer was used for storing pixel values in all known
implementations of FFV1 bitstream. So in some circumstances, the most significant bit was wrongly in-
terpreted (used as a sign bit instead of the 16th bit of an unsigned integer). Note that when the issue
is discovered, the only configuration of all known implementations being impacted is 16-bit YCbCr color
space with Range Coder coder, as other potentially impacted configurations (e.g. 15/16-bit JPEG2000-RCT
color space with Range Coder coder, or 16-bit any color space with Golomb Rice coder) were implemented
nowhere. In the meanwhile, 16-bit JPEG2000-RCT color space with Range Coder coder was implemented
without this issue in one implementation and validated by one conformance checker. It is expected (to be
confirmed) to remove this exception for the media predictor in the next version of the bitstream.

3.3 Context

to——tm— b ————t

| | | T | I
e et St Lt
| [t1 | t ltr |
B i e it
[L 111X I

ottt ———+

The quantized sample differences L-1, I-tl, tl-t, t-T, t-tr are used as context:

context = Qoll — tl] + |Qol (Qu[tl — 1] + |Qu] (Q2[t — tr] + |Q2] (Qs[L — 1] + |Qs] Qu[T —t])))

If the context is smaller than 0 then -context is used and the difference between the sample and its predicted
value is encoded with a flipped sign.

3.4 Quantization
There are 5 quantization tables for the 5 sample differences, both the number of quantization steps and their

distribution are stored in the bitstream. Each quantization table has exactly 256 entries, and the 8 least
significant bits of the sample difference are used as index:

Qi[a — b] = Table;[(a — b)&255]

3.5 Colorspace

FFV1 supports two colorspaces: YCbCr and JPEG2000-RCT. Both colorspaces allow an optional Alpha
plane that can be used to code transparency data.

3.5.1 YCbCr

In YCbCr colorspace, the Cb and Cr planes are optional, but if used then MUST be used together. Omitting
the Cb and Cr planes codes the frames in grayscale without color data. An FFV1 frame using YCbCr MUST
use one of the following arrangements:

Y

e Y, Alpha

e Y, Cb, Cr

e Y, Cb, Cr, Alpha
When FFV1 uses the YCbCr colorspace, the Y plane MUST be coded first. If the Cb and Cr planes are
used then they MUST be coded after the Y plane. If an Alpha (transparency) plane is used, then it MUST
be coded last.

3.5.2 JPEG2000-RCT

JPEG2000-RCT is a Reversible Color Transform that codes RGB (red, green, blue) planes losslessly in a
modified YCbCr colorspace. Reversible conversions between YCbCr and RGB use the following formulae.

Cb=b—g

Cr=r—g

Y=g+ (Cb+Cr)>>2

g=Y —(Cb+Cr)>>2

r=Cr+g

b=Cb+g

[ISO.15444-1.2016]
An FFV1 frame using JPEG2000-RCT MUST use one of the following arrangements:

e Y, Cb, Cr
e Y, Cb, Cr, Alpha
When FFV1 uses the JPEG2000-RCT colorspace, the horizontal lines are interleaved to improve caching

efficiency since it is most likely that the RCT will immediately be converted to RGB during decoding. The
interleaved coding order is also Y, then Cb, then Cr, and then if used Alpha.

As an example, a frame that is two pixels wide and two pixels high, could be comprised of the following
structure:

S S — +
| Pixell1,1] | Pixel[2,1] |
| Y[1,1] Cb[1,1] Cr[1,1] | Y[2,1] Cb[2,1] Cr[2,1] |
e e +
| Pixell[1,2] | Pixel[2,2] |
| Y[1,2] Cb[1,2] Cr[1,2] | Y[2,2] Cb[2,2] Cr[2,2] |
e e T +

In JPEG2000-RCT colorspace, the coding order would be left to right and then top to bottom, with values
interleaved by lines and stored in this order:

Y[1,1] Y[2,1] Cb[1,1] Cb[2,1] Cr[1,1] Cr[2,1] Y[1,2] Y[2,2] Cb[1,2] Cb[2,2] Cr[1,2] Cr[2,2]

3.6 Coding of the sample difference

Instead of coding the n+1 bits of the sample difference with Huffman or Range coding (or n+2 bits, in
the case of RCT), only the n (or n+1) least significant bits are used, since this is sufficient to recover
the original sample. In the equation below, the term “bits” represents bits_per_raw_sample+1 for RCT or
bits_per_raw_sample otherwise:

coder_input = [(sample,difference + Qbitsfl) & (Zbits — 1)] — gbits—1

3.6.1 Range coding mode

Early experimental versions of FFV1 used the CABAC Arithmetic coder from H.264 as defined in [ISO.14496-
10.2014] but due to the uncertain patent/royalty situation, as well as its slightly worse performance, CABAC
was replaced by a Range coder based on an algorithm defined by G. Nigel and N. Martin in 1979 [range-
coding].

3.6.1.1 Range binary values

To encode binary digits efficiently a Range coder is used. Cj is the i-th Context. B; is the i-th byte of the
bytestream. b; is the i-th Range coded binary value, Sp; is the i-th initial state, which is 128. The length of
the bytestream encoding n binary symbols is j, bytes.

| RiSic,
T, = 28

AN t;=R;—r;, <—

Sit1,0; = zero_stateg, .. I, = L;
li=L;i—Ri+r; A ti =r; —

A\
Sit1,0; = one_states, .. A\
Sivie =8 = Ci#k

Riy = 28ti AN Liy = 28li + Bji N Jimi=4i+1 &= t< 28
Riy1 =t A Liyi=1; AN Gimi=g = t;>2®

Ry = 65280
Lo=28By+ B;

Jo=2

3.6.1.2 Range non binary values

To encode scalar integers, it would be possible to encode each bit separately and use the past bits as context.
However that would mean 255 contexts per 8-bit symbol which is not only a waste of memory but also
requires more past data to reach a reasonably good estimate of the probabilities. Alternatively assuming a
Laplacian distribution and only dealing with its variance and mean (as in Huffman coding) would also be
possible, however, for maximum flexibility and simplicity, the chosen method uses a single symbol to encode
if a number is 0 and if not encodes the number using its exponent, mantissa and sign. The exact contexts
used are best described by the following code, followed by some comments.

function

void put_symbol (RangeCoder *c, uint8_t *state, int v, int \

is_signed) {
int i;

put_rac(c, statet+0, !v);

if (v) {

int a= abs(v);

int e= log2(a);

|

|

|

|

|

|

|

|

|

|

for (i=0; i<e; i++)

put_rac(c, state+l+min(i,9), 1); //1..10 /

|

put_rac(c, state+1+min(i,9), 0); |
for (i=e-1; i>=0; i--)

/

|

|

/

put_rac(c, state+22+min(i,9), (a>>i)&l); //22..31

if (is_signed)
put_rac(c, state+11l + min(e, 10), v < 0); //11..21

3.6.1.3 Initial values for the context model

At keyframes all Range coder state variables are set to their initial state.

3.6.1.4 State transition table

one_state; = de fault_state_transition; + state_transition_delta;

zero_state; = 256 — one_statessg—;
3.6.1.5 default_state_transition
o, o, o0, o0, 0O, O, O, O, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,

74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,

89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99,100,101,102,103,
104,105,106,107,108,109,110,111,112,113,114,114,115,116,117,118,
119,120,121,122,123,124,125,126,127,128,129,130,131,132,133, 133,
134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,
150,151,152,1562,153,154,155,156,157,158,159,160,161,162,163, 164,
165,166,167,168,169,170,171,171,172,173,174,175,176,177,178,179,
180,181,182,183,184,185,186,187,188,189,190,190,191,192,194,194,
195,196,197,198,199,200,201,202,202,204,205,206,207,208,209, 209,
210,211,212,213,215,215,216,217,218,219,220,220,222,223,224,225,
226,227,227,229,229,230,231,232,234,234,235,236,237,238,239, 240,
241,242,243,244,245,246,247,248,248, 0, 0O, O, O, O, O, O,

3.6.1.6 alternative state transition table

The alternative state transition table has been build using iterative minimization of frame sizes and generally
performs better than the default. To use it, the coder_type MUST be set to 2 and the difference to the default
MUST be stored in the parameters. The reference implementation of FFV1 in FFmpeg uses this table by
default at the time of this writing when Range coding is used.

o, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
53, 74, 55, 57, 58, 58, 74, 60,101, 61, 62, 84, 66, 66, 68, 69,
8r, 82, 71, 97, 73, 73, 82, 75,111, 77, 94, 78, 87, 81, 83, 97,
85, 83, 94, 86, 99, 89, 90, 99,111, 92, 93,134, 95, 98,105, 98,

105,110,102,108,102,118,103,106,106,113,109,112,114,112,116,125,
115,116,117,117,126,119,125,121,121,123,145,124,126,131,127,129,
165,130,132,138,133,135,145,136,137,139,146,141,143,142,144,148,
147,155,151,149,1561,150,152,157,1563,154,156,168,158,162,161,160,
172,163,169,164,166,184,167,170,177,174,171,173,182,176,180,178,
175,189,179,181,186,183,192,185,200,187,191,188,190,197,193,196,

197,194,195,196,198,202,199,201,210,203,207,204,205,206,208,214,

10

209,211,221,212,213,215,224,216,217,218,219,220,222,228,223,225,
226,224,227,229,240,230,231,232,233,234,235,236,238,239,237,242,

241,243,242,244,245,246,247,248,249,250,251,252,252,253,254,255,

3.6.2 Huffman coding mode
This coding mode uses Golomb Rice codes. The VLC code is split into 2 parts, the prefix stores the most

significant bits, the suffix stores the k least significant bits or stores the whole number in the ESC case. The
end of the bitstream (of the frame) is filled with 0-bits until that the bitstream contains a multiple of 8 bits.

3.6.2.1 Prefix

bits value
1 0
01 1

0000 0000 0001 11
0000 0000 0000 ESC

3.6.2.2 Suffix

non ESC the k least significant bits MSB first
ESC the value - 11, in MSB first order, ESC may only be used if the value cannot be
coded as non ESC

3.6.2.3 Examples

bits value

1 0
001 2
1 00 0
2
5
9

110
01 01
any 000000000000 10000000 13

NN OO | ®

3.6.2.4 Run mode

Run mode is entered when the context is 0 and left as soon as a non-0 difference is found. The level is
identical to the predicted one. The run and the first different level is coded.

3.6.2.5 Run length coding

The run value is encoded in 2 parts, the prefix part stores the more significant part of the run as well as
adjusting the run_index which determines the number of bits in the less significant part of the run. The 2nd
part of the value stores the less significant part of the run as it is. The run_index is reset for each plane and
slice to 0.

11

function

log2_run[41]={
0,0,0,0,1, 1, 1, 1,
2, 2,2, 2, 3, 3, 3, 3,
4, 4, 5, 5,6, 6, 7,7,
8, 9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,
24,

s

|
——
|
|
|
|
|
|
|
|
|
if (run_count == 0 &% run_mode == 1) { |
if (get_bits1()) { |
run_count = 1 << log2_run[run_index]; |
if (x + run_count <= w)
run_index++;
} else { |
if (log2_run[run_index]) |
run_count = get_bits(log2_run[run_index]); |
else |
run_count = 0;
if (run_index)
run_index--;
run_mode = 2; |
|
|

¥
The log2_run function is also used within [ISO.14495-1.1999].

3.6.2.6 Level coding

Level coding is identical to the normal difference coding with the exception that the 0 value is removed as
it cannot occur:

if (diff>0) diff--;

encode(diff);
Note, this is different from JPEG-LS, which doesn’t use prediction in run mode and uses a different encoding

and context model for the last difference On a small set of test samples the use of prediction slightly improved
the compression rate.

4 Bitstream

Symbol Definition

u(n) unsigned big endian integer using n bits

Sg Golomb Rice coded signed scalar symbol coded with the method described in
Huffman Coding Mode

br Range coded Boolean (1-bit) symbol with the method described in Range
binary values

ur Range coded unsigned scalar symbol coded with the method described in
Range non binary values

ST Range coded signed scalar symbol coded with the method described in Range

non binary values

12

The same context which is initialized to 128 is used for all fields in the header.

The following MUST be provided by external means during initialization of the decoder:
frame pixel width is defined as frame width in pixels.

frame pixel height is defined as frame height in pixels.

Default values at the decoder initialization phase:

ConfigurationRecordIsPresent is set to 0.

4.1 Configuration Record

In the case of a bitstream with version >= 3, a Configuration Record is stored in the underlying container,
at the track header level. It contains the parameters used for all frames. The size of the Configuration
Record, NumBytes, is supplied by the underlying container.

function | type
__ [
ConfigurationRecord(NumBytes) { |
ConfigurationRecordIsPresent = 1 |
Parameters() |
while(remaining bits_in_bitstream(NumBytes) > 32) |
reserved_for_future_use | u(1)
configuration_record_crc_parity | u(32)

4.1.1 reserved_for_future_use

reserved_for_future_use has semantics that are reserved for future use. Encoders conforming to this
version of this specification SHALL NOT write this value. Decoders conforming to this version of this
specification SHALL ignore its value.

4.1.2 configuration_record_crc_parity

configuration record_crc_parity 32 bits that are chosen so that the Configuration Record as a whole has
a crc remainder of 0. This is equivalent to storing the crc remainder in the 32-bit parity. The CRC generator
polynomial used is the standard IEEE CRC polynomial (0x104C11DB7) with initial value 0.

4.1.3 Mapping FFV1 into Containers

This Configuration Record can be placed in any file format supporting Configuration Records, fitting as
much as possible with how the file format uses to store Configuration Records. The Configuration Record
storage place and NumBytes are currently defined and supported by this version of this specification for the
following container formats:

4.1.3.1 In AVI File Format

The Configuration Record extends the stream format chunk (“AVI 7, “hdlr”; “strl”, “strf”) with the Config-
urationRecord bitstream. See [AVI] for more information about chunks.

NumBytes is defined as the size, in bytes, of the strf chunk indicated in the chunk header minus the size of
the stream format structure.

13

4.1.3.2 In ISO/IEC 14496-12 (MP4 File Format)

The Configuration Record extends the sample description box (“moov”; “trak”, “mdia”, “minf”, “stbl”
“stsd”) with a “glbl” box which contains the ConfigurationRecord bitstream. See [ISO.14496-12.2015] for
more information about boxes.

NumBytes is defined as the size, in bytes, of the “glbl” box indicated in the box header minus the size of the
box header.

4.1.3.3 In NUT File Format

The codec_specific_data element (in “stream_header” packet) contains the ConfigurationRecord bitstream.
See [NUT] for more information about elements.

NumBytes is defined as the size, in bytes, of the codec_specific_data element as indicated in the “length” field
of codec_specific_data

4.1.3.4 In Matroska File Format

FFV1 SHOULD use V_FFV1 as the Matroska Codec ID. For FFV1 versions 2 or less, the Matroska
CodecPrivate Element SHOULD NOT be used. For FFV1 versions 3 or greater, the Matroska
CodecPrivate Element MUST contain the FFV1 Configuration Record structure and no other data. See
[Matroska] for more information about elements.

4.2 Frame

A frame consists of the keyframe field, parameters (if version <=1), and a sequence of independent slices.

if (version >= 3)
SliceFooter()

function | type
__ ——
Frame(NumBytes) { |
keyframe | br
if (keyframe && !ConfigurationRecordIsPresent
Parameters() |
while (remaining_bits_in_bitstream(NumBytes))
Slice()
} I
4.3 Slice
function | type
__ ——
Slice() { |
if (version >= 3) |
SliceHeader()
SliceContent() |
if (coder_type == 0) |
while (!'byte_aligned())
padding | u(1)
|
|
|

}

padding specifies a bit without any significance and used only for byte alignment. MUST be 0.

14

4.4 Slice Header

function | type
__ ——
SliceHeader() { |
slice_x | ur
slice_y | ur
slice_width - 1 | ur
slice_height - 1 | ur
for(i = 0; i < quant_table_index_count; i++) |
quant_table_index [i] | ur
picture_structure | ur
sar_num | ur
sar_den | ur
if (version >= 4) { |
reset_contexts | br
slice_coding_mode | ur
|
|

4.4.1 slicex

slice_x indicates the x position on the slice raster formed by num_h_slices. Inferred to be 0 if not present.

4.4.2 slice.y

slice_y indicates the y position on the slice raster formed by num_v_slices. Inferred to be 0 if not present.

4.4.3 slice_width

slice_width indicates the width on the slice raster formed by num_h_slices. Inferred to be 1 if not present.

4.4.4 slice_height

slice_height indicates the height on the slice raster formed by num_v_slices. Inferred to be 1 if not present.

4.4.5 quant_table index_count

quant_table_index_count is defined as 1 + ((chroma_planes || version <=3)? 1: 0) + (alpha_plane ?
1:0).

4.4.6 quant_table index

quant_table_index indicates the index to select the quantization table set and the initial states for the slice.
Inferred to be 0 if not present.

4.4.7 picture_structure

picture_structure specifies the picture structure. Inferred to be 0 if not present.

15

value picture structure used

0 unknown

1 top field first

2 bottom field first
3 progressive

Other reserved for future use

4.4.8 sar_num

sar_num specifies the sample aspect ratio numerator. Inferred to be 0 if not present. MUST be 0 if sample
aspect ratio is unknown.

4.4.9 sar_den

sar_den specifies the sample aspect ratio numerator. Inferred to be 0 if not present. MUST be 0 if sample
aspect ratio is unknown.

4.4.10 reset_contexts

reset_contexts indicates if slice contexts must be reset. Inferred to be 0 if not present.

4.4.11 slice_.coding_mode

slice_coding mode indicates the slice coding mode. Inferred to be 0 if not present.

value slice coding mode

0 normal Range Coding or VLC
1 raw PCM
Other reserved for future use

4.5 Slice Content

function |
__ ——
SliceContent() { |
if (colorspace_type == 0) { |
for(p = 0; p < primary_color_count; p++) { |
for(y = 0; y < plane_pixel_height[p]; y++) |
Line(p, y) |
} else if (colorspace_type == 1) { |
for(y = 0; y < slice_pixel_height; y++) |
for(p = 0; p < primary_color_count; p++) { |
Line(p, y) |
|
|

16

4.5.1 primary_color_count

primary_color_count is defined as 1 + (chroma_planes ? 2: 0) + (‘alpha_plane ? 1: 0).

4.5.2 plane_pixel_height

plane pixel height[p] is the height in pixels of plane p of the slice. plane pixel height[0
] and plane_pixel height[1 + (chromaplanes ? 2 : O)] value is slice_pixel height.
If chroma planes is set to 1, plane pixel height[1] and plane pixel height[2] value is
[slice_pizel _height/v_chroma_subsample].

4.5.3 slice_pixel_height

slice_pixel height is the height in pixels of the slice. Its value is |(slice.y + slice_height) x
slice_pixel _height/num_v_slices| — slice_pixel_y.

4.5.4 slice_pixel.y

slice_pixel_y is the slice vertical position in pixels. Its value is | slice_y frame_pizel_height /num_v_slices].

4.6 Line

function

|
|
Line(p, y) { |
if (colorspace_type == 0) { |
for(x = 0; x < plane_pixel_width[p 1; x++) |

Pixel(p, y, x)
} else if (colorspace_type == 1) { |
for(x = 0; x < slice_pixel_width; x++) |

Pixel(p, y, x)
|
|

4.6.1 plane_pixel_width
plane pixel width[p] is the width in pixels of plane p of the slice. plane pixel width[O
] and plane pixel width[1 + (chromaplanes 7 2 : O)] value is slice_pixel width.

If chroma planes is set to 1, plane pixel width[1] and plane_pixel width[2] value is
[slice_pizel width/v_chroma_subsample].

4.6.2 slice_pixel width

slice pixel width is the width in pixels of the slice. Its value is |[(slice.x + slice_width) x
slice_pizel width/num_h_slices| — slice_pizel_x.

4.6.3 slice_pixel x

slice_pixel_x is the slice horizontal position in pixels. Its valueis |slice_xx frame_pizel_width/num_h_slices].

17

4.7 Slice Footer

Note: slice footer is always byte aligned.

function | type
__ ——

SliceFooter() { |
slice_size | u(24)

if (ec) { |
error_status | u(8)
slice_crc_parity | u(32)

|

|

4.7.1 slice_size

slice_size indicates the size of the slice in bytes. Note: this allows finding the start of slices before previous
slices have been fully decoded. And allows this way parallel decoding as well as error resilience.

4.7.2 error_status

error_status specifies the error status.

value error status

0 no error
1 slice contains a correctable error
2 slice contains a uncorrectable error

Other reserved for future use

4.7.3 slice_crc_parity
slice_crc_parity 32 bits that are chosen so that the slice as a whole has a crc remainder of 0. This is

equivalent to storing the crc remainder in the 32-bit parity. The CRC generator polynomial used is the
standard IEEE CRC polynomial (0x104C11DB7) with initial value 0.

4.8 Parameters

function type
Parameters() {
version ur
if (version >= 3)
micro_version ur

if (coder_type > 1)

|
|
|
|
|
|
coder_type | ur
|
for (i = 1; i < 256; i++) |
|
|
|
|
|

state_transition_deltal[i] sr
colorspace_type ur
if (version >= 1)
bits_per_raw_sample ur
chroma_planes br

18

log2(h_chroma_subsample) | ur
log2(v_chroma_subsample) | ur
alpha_plane | br

if (version >= 3) { |
num_h_slices - 1 | ur
num_v_slices - 1 | ur
quant_table_count | ur

} I

for(i = 0; i < quant_table_count; i++) |

QuantizationTable(i) |

if (version >= 3) { |

for(i = 0; i < quant_table_count; i++) { |
states_coded | br

if (states_coded)

for(j = 0; j < context_count[i]; j++) |

for(k = 0; k < CONTEXT_SIZE; k++) |
initial_state_deltal i1 1[j 1[k] | sr

} I
ec | ur
intra | ur

|

|

4.8.1 version

version specifies the version of the bitstream. Each version is incompatible with others versions: decoders
SHOULD reject a file due to unknown version. Decoders SHOULD reject a file with version =< 1 &&
ConfigurationRecordIsPresent == 1. Decoders SHOULD reject a file with version >= 3 && Configura-
tionRecordIsPresent == 0.

value version

0 FFV1 version 0
1 FFV1 version 1
2 reserved®

3 FFV1 version 3

Other reserved for future use

* Version 2 was never enabled in the encoder thus version 2 files SHOULD NOT exist, and this document
does not describe them to keep the text simpler.

4.8.2 micro_version

micro_version specifies the micro-version of the bitstream. After a version is considered stable (a micro-
version value is assigned to be the first stable variant of a specific version), each new micro-version after this
first stable variant is compatible with the previous micro-version: decoders SHOULD NOT reject a file due
to an unknown micro-version equal or above the micro-version considered as stable.

Meaning of micro_version for version 3:

value micro_version

0...3 reserved*
4 first stable variant

19

value micro_version

Other reserved for future use

* were development versions which may be incompatible with the stable variants.

Meaning of micro_version for version 4 (note: at the time of writing of this specification, version 4 is not
considered stable so the first stable version value is to be announced in the future):

value micro_version
0...TBA reserved*

TBA first stable variant
Other reserved for future use

* were development versions which may be incompatible with the stable variants.

4.8.3 coder_type

coder_type specifies the coder used

value coder used

0 Golomb Rice
1 Range Coder with default state transition table
2 Range Coder with custom state transition table

Other reserved for future use

4.8.4 state_transition_delta

state_transition_delta specifies the Range coder custom state transition table. If state_transition_delta
is not present in the bitstream, all Range coder custom state transition table elements are assumed to be 0.

4.8.5 colorspace_type

colorspace_type specifies the color space.

value color space used

0 YCbCr
1 JPEG2000-RCT
Other reserved for future use

4.8.6 chroma planes

chroma_planes indicates if chroma (color) planes are present.

value color space used

0 chroma planes are not present
1 chroma planes are present

20

4.8.7 Dbits_per_raw_sample

bits_per_raw_sample indicates the number of bits for each luma and chroma sample. Inferred to be 8 if not
present.

value bits for each luma and chroma sample

0 reserved™®
Other the actual bits for each luma and chroma sample

* Encoders MUST NOT store bits_per_raw_sample = 0 Decoders SHOULD accept and interpret
bits_per_raw_sample = 0 as 8.

4.8.8 h_chroma_subsample

h_chroma_subsample indicates the subsample factor between luma and chroma width (chroma_width =
2—log2,}L,ch7'o7na,subsamplelumaiwidth>.

4.8.9 v_chroma subsample

v_chroma_subsample indicates the subsample factor between luma and chroma height (chroma_height =
2—log2,1),ch7'oma,subsamplelumaihel'ght).

4.8.10 alpha plane

alpha_ plane indicates if a transparency plane is present.

value color space used

0 transparency plane is not present
1 transparency plane is present

4.8.11 num_h_slices

num_h_slices indicates the number of horizontal elements of the slice raster. Inferred to be 1 if not present.

4.8.12 num_v_slices

num_v_slices indicates the number of vertical elements of the slice raster. Inferred to be 1 if not present.

4.8.13 quant_table_count

quant_table_count indicates the number of quantization table sets. Inferred to be 1 if not present.

4.8.14 states_coded

states_coded indicates if the respective quantization table set has the initial states coded. Inferred to be 0
if not present.

21

value initial states

0 initial states are not present and are assumed to be all 128
1 initial states are present

4.8.15 initial state_delta
initial_state_delta [i][j][k] indicates the initial Range coder state, it is encoded using k as context

index and pred = j ? initial_states[i][j - 1][k| : 128 initial_state[i][j][k]| = (pred + initial state_delta] i
I3k]) & 255

4.8.16 ec

ec indicates the error detection/correction type.

value error detection/correction type

0 32-bit CRC on the global header
1 32-bit CRC per slice and the global header
Other reserved for future use

4.8.17 intra

intra indicates the relationship between frames. Inferred to be 0 if not present.

value relationship

0 frames are independent or dependent (keyframes and non keyframes)
1 frames are independent (keyframes only)
Other reserved for future use

4.9 Quantization Tables

The quantization tables are stored by storing the number of equal entries -1 of the first half of the table
using the method described in Range Non Binary Values. The second half doesn’t need to be stored as it is
identical to the first with flipped sign.

example:
Table: 00111122-2-2-2-1-1-1-1 0
Stored values: 1, 3, 1

function |
__ ——
QuantizationTable(i) { |
scale = 1 |
for(j = 0; j < MAX_CONTEXT_INPUTS; j++) { |
QuantizationTablePerContext(i, j, scale) |

scale *= 2 * len_count[i J[j 1 -1 |

|

|

|

}

context_count[i] = (scale + 1) / 2

22

MAX_CONTEXT_INPUTS is 5.

function type
QuantizationTablePerContext(i, j, scale) {
v =20
for(k = 0; k < 128;) {
len - 1 sr

|
|
|
|
|
|
for(a = 0; a < len; a++) { [
quant_tables[i J[j J[k] = scalex v |

k++ |

} |
v+ |

} I
for(k = 1; k < 128; k++) { [
quant_tables[i J[j 1[256 - k] =\ |
-quant_tables[i J[j 1[k] |

} |
quant_tables[i J[j 1[128] =\ |
-quant_tables[i J[j I[127] |
len_ count[i J[j] =w |
|

4.9.1 quant_tables

quant_tables indicates the quantification table values.

4.9.2 context_count

context_count indicates the count of contexts.

4.9.3 Restrictions

To ensure that fast multithreaded decoding is possible, starting version 3 and if frame_pixel_width *
frame_pixel_height is more than 101376, slice_width * slice_height MUST be less or equal to num_h_slices *
num_v_slices / 4. Note: 101376 is the frame size in pixels of a 352x288 frame also known as CIF (“Common
Intermediate Format”) frame size format.

For each frame, each position in the slice raster MUST be filled by one and only one slice of the frame (no
missing slice position, no slice overlapping).

For each Frame with keyframe value of 0, each slice MUST have the same value of slice_x, slice_y, slice_width,
slice_height as a slice in the previous frame, except if reset_contexts is 1.

5 Security Considerations

Like any other codec, (such as [RFC6716]), FFV1 should not be used with insecure ciphers or cipher-modes
that are vulnerable to known plaintext attacks. Some of the header bits as well as the padding are easily
predictable.

Implementations of the FFV1 codec need to take appropriate security considerations into account, as outlined
in [RFC4732]. Tt is extremely important for the decoder to be robust against malicious payloads. Malicious
payloads must not cause the decoder to overrun its allocated memory or to take an excessive amount of

23

resources to decode. Although problems in encoders are typically rarer, the same applies to the encoder.
Malicious video streams must not cause the encoder to misbehave because this would allow an attacker to
attack transcoding gateways. A frequent security problem in image and video codecs is also to not check
for integer overflows in pixel count computations, that is to allocate width * height without considering that
the multiplication result may have overflowed the arithmetic types range.

The reference implementation [REFIMPL] contains no known buffer overflow or cases where a specially
crafted packet or video segment could cause a significant increase in CPU load.

The reference implementation [REFIMPL] was validated in the following conditions:

¢ Sending the decoder valid packets generated by the reference encoder and verifying that the decoder’s
output matches the encoders input.

e Sending the decoder packets generated by the reference encoder and then subjected to random corrup-
tion.

e Sending the decoder random packets that are not FFV1.

In all of the conditions above, the decoder and encoder was run inside the [VALGRIND] memory debugger as
well as clangs address sanitizer [Address-Sanitizer], which track reads and writes to invalid memory regions
as well as the use of uninitialized memory. There were no errors reported on any of the tested conditions.

6 Appendixes

6.1 Decoder implementation suggestions
6.1.1 Multi-threading support and independence of slices

The bitstream is parsable in two ways: in sequential order as described in this document or with the pre-
analysis of the footer of each slice. Each slice footer contains a slice_size field so the boundary of each slice is
computable without having to parse the slice content. That allows multi-threading as well as independence
of slice content (a bitstream error in a slice header or slice content has no impact on the decoding of the
other slices).

After having checked keyframe field, a decoder SHOULD parse slice_size fields, from slice_size of the last slice
at the end of the frame up to slice_size of the first slice at the beginning of the frame, before parsing slices, in
order to have slices boundaries. A decoder MAY fallback on sequential order e.g. in case of corrupted frame
(frame size unknown, slice_size of slices not coherent...) or if there is no possibility of seek into the stream.

Architecture overview of slices in a frame:

first slice header
first slice content
first slice footer

second slice header
second slice content
second slice footer

last slice header
last slice content
last slice footer

24

7 Changelog

See https://github.com/FFmpeg/FFV1/commits/master

8 ToDo

e mean,k estimation for the Golomb Rice codes

9 Copyright

Copyright 2003-2013 Michael Niedermayer <michaelni@gmx.at> This text can be used under the GNU Free
Documentation License or GNU General Public License. See http://www.gnu.org/licenses/fdl.txt.

10 Bibliography

10.1 References

RFC 2119 - Key words for use in RFCs to Indicate Requirement Levels https://www.ietf.org/rfc/rfc2119.txt
ISO/IEC 9899 - Programming languages - C http://www.open-std.org/JTC1/SC22/WG14/www /standards
JPEG-LS FCD 14495 https://www.jpeg.org/public/fcd14495p.pdf

H.264 Draft http://bs.hhi.de/~wiegand/JVT-G050.pdf

HuffYuv http://web.archive.org/web/20040402121343/http://cultact-server.novi.dk/kpo/huffyuv/huffyuv.
html

FFmpeg https://ffmpeg.org
JPEG2000 https://www.jpeg.org/jpeg2000/

Range encoding: an algorithm for removing redundancy from a digitised message. Presented by G. Nigel N.
Martin at the Video & Data Recording Conference, IBM UK Scientific Center held in Southampton July
24-27 1979.

AVI RIFF File Format https://msdn.microsoft.com/en-us/library/windows/desktop/dd318189%28v=vs.
85%29.aspx

Information technology Coding of audio-visual objects Part 12: ISO base media file format https://www.
iso.org/iso/iso_ catalogue/catalogue tc/catalogue detail.htm?csnumber=61988

NUT Open Container Format https://www.ffmpeg.org/~michael /nut.txt

DOS Handley, M., Rescorla, E., and TAB, “Internet Denial-of-Service Considerations”, RFC 4732, December
2006.

VALGRIND “Valgrind website”, http://valgrind.org/.

ASAN Addresss Sanitizer, http://clang.llvi.org/docs/AddressSanitizer.html.

REFIMPL, The reference FFV1 implementation / the FFV1 codec in FFmpeg, https://ffmpeg.org/.
OPUS, Definition of the Opus Audio Codec, https://www.ietf.org/rfc/rfc6716.txt

YCbCr, Wikipedia, “YCbCr”, https://en.wikipedia.org/w /index.php?title=YCbCr.

Matroska, IETF, “Matroska”, https://datatracker.ietf.org/doc/draft-lhomme-cellar-matroska/, 2016.

25

https://github.com/FFmpeg/FFV1/commits/master
http://www.gnu.org/licenses/fdl.txt
https://www.ietf.org/rfc/rfc2119.txt
http://www.open-std.org/JTC1/SC22/WG14/www/standards
https://www.jpeg.org/public/fcd14495p.pdf
http://bs.hhi.de/~wiegand/JVT-G050.pdf
http://web.archive.org/web/20040402121343/http://cultact-server.novi.dk/kpo/huffyuv/huffyuv.html
http://web.archive.org/web/20040402121343/http://cultact-server.novi.dk/kpo/huffyuv/huffyuv.html
https://ffmpeg.org
https://www.jpeg.org/jpeg2000/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd318189%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd318189%28v=vs.85%29.aspx
https://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=61988
https://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=61988
https://www.ffmpeg.org/~michael/nut.txt
http://valgrind.org/
http://clang.llvm.org/docs/AddressSanitizer.html
https://ffmpeg.org/
https://www.ietf.org/rfc/rfc6716.txt
https://en.wikipedia.org/w/index.php?title=YCbCr
https://datatracker.ietf.org/doc/draft-lhomme-cellar-matroska/

	Introduction
	Notation and Conventions
	Definitions
	Conventions
	Arithmetic operators
	Assignment operators
	Comparison operators
	Mathematical functions
	Order of operation precedence
	Range
	NumBytes
	Bitstream functions

	General Description
	Border
	Median predictor
	Context
	Quantization
	Colorspace
	YCbCr
	JPEG2000-RCT

	Coding of the sample difference
	Range coding mode
	Huffman coding mode

	Bitstream
	Configuration Record
	reserved_for_future_use
	configuration_record_crc_parity
	Mapping FFV1 into Containers

	Frame
	Slice
	Slice Header
	slice_x
	slice_y
	slice_width
	slice_height
	quant_table_index_count
	quant_table_index
	picture_structure
	sar_num
	sar_den
	reset_contexts
	slice_coding_mode

	Slice Content
	primary_color_count
	plane_pixel_height
	slice_pixel_height
	slice_pixel_y

	Line
	plane_pixel_width
	slice_pixel_width
	slice_pixel_x

	Slice Footer
	slice_size
	error_status
	slice_crc_parity

	Parameters
	version
	micro_version
	coder_type
	state_transition_delta
	colorspace_type
	chroma_planes
	bits_per_raw_sample
	h_chroma_subsample
	v_chroma_subsample
	alpha_plane
	num_h_slices
	num_v_slices
	quant_table_count
	states_coded
	initial_state_delta
	ec
	intra

	Quantization Tables
	quant_tables
	context_count
	Restrictions

	Security Considerations
	Appendixes
	Decoder implementation suggestions
	Multi-threading support and independence of slices

	Changelog
	ToDo
	Copyright
	Bibliography
	References

